PTAk  data as a ratio Observed/Expected
under complete independence with metrics as margins of the multiple
contingency table (in frequencies).FCAk(X,nbPT=3,nbPT2=1,minpct=0.01,
               smoothing=FALSE,smoo=rep(list(
                       function(u)ksmooth(1:length(u),u,kernel="normal",
                       bandwidth=3,x.points=(1:length(u)))$y),length(dim(X))),
                     verbose=getOption("verbose"),file=NULL,
                       modesnam=NULL,addedcomment="",chi2=TRUE,E=NULL, ...)SVDgenSVDgenNULL, or printed in the given  NULL "mo 1"
     ..."mo k"printt after the title of the analysisFCAmetNULL is an array with the same dimensions as XFCAk (inherits PTAk) objectPTAk of the
$(k+1)$-uple is done, e.g. for a three way contingency table
$k=3$ the 4-uple data and metrics is:
 $$((D_I^{-1} \otimes D_J^{-1} \otimes D_K^{-1})P, \quad D_I, \quad D_J, \quad D_K)$$
where the metrics are diagonals of the corresponding margins. For
full description of arguments see PTAk. If E
is not NULL an FCAk-modes relatively to a model is
done (see Escoufier(1985) and therin reference
Escofier(1984) for a 2-way derivation), e.g. for a three way contingency table
$k=3$ the 4-tuple data and metrics is:
 $$((D_I^{-1} \otimes D_J^{-1} \otimes D_K^{-1})(P-E), \quad D_I, \quad D_J, \quad D_K)$$
  If E was the complete independence (product of the margins)
  then this would give an AFCk but without looking at the
  marginal  dependencies (i.e. for a three way table no two-ways lack of
  independence are looked for).Leibovici D(1993) Facteurs 
Leibovici D (2000) Multiway Multidimensional Analysis for
Pharmaco-EEG Studies.
Leibovici D (2008) Spatio-temporal Multiway Decomposition using Principal Tensor Analysis on k-modes:the R package 
PTAk, FCAmet, summary.FCAk