Learn R Programming

fclust (version 1.0.1)

FKM.ent: Fuzzy k-means with entropy regularization

Description

Performs the fuzzy k-means clustering algorithm with entropy regularization.

Usage

FKM.ent (X, k, ent, RS, stand, startU, conv, maxit)

Arguments

X
Matrix or data.frame
k
Number of clusters (default: 2)
ent
Degree of fuzzy entropy (default: 1)
RS
Number of (random) starts (default: 1)
stand
Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU
Rational starting point for the membership degree matrix U (default: no rational start)
conv
Convergence criterion (default: 1e-9)
maxit
Maximum number of iterations (default: 1e+6)

Value

  • Object of class fclust, which is a list with the following components:
  • UMembership degree matrix
  • HPrototype matrix
  • FArray containing the covariance matrices of all the clusters (NULL for FKM.ent)
  • clusMatrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
  • medoidVector containing the indices of the medoid objects (NULL for FKM.ent)
  • valueVector containing the loss function values for the RS starts
  • cputVector containing the computational times (user times) for the RS starts
  • iterVector containing the numbers of iterations for the RS starts
  • kNumber of clusters
  • mParameter of fuzziness (NULL for FKM.ent)
  • entDegree of fuzzy entropy
  • vpVolume parameter (NULL for FKM.ent)
  • deltaNoise distance (NULL for FKM.ent)
  • standStandardization (Yes if stand=1, No if stand=0)
  • XcaData used in the clustering algorithm (standardized data if stand=1)
  • XRaw data
  • callMatched call

References

Li R., Mukaidono M., 1995. A maximum entropy approach to fuzzy clustering. Proceedings of the Fourth IEEE Conference on Fuzzy Systems (FUZZ-IEEE/IFES '95), pp. 2227-2232. Li R., Mukaidono M., 1999. Gaussian clustering method based on maximum-fuzzy-entropy interpretation. Fuzzy Sets and Systems, 102, 253-258.

See Also

Fclust, Fclust.index

Examples

Run this code
data(Mc)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
Mc=Mc[,-1]
## It may take more than a few seconds
clust=FKM.ent(Mc[,1:(ncol(Mc)-1)],k=6,ent=3,RS=10,stand=1)

Run the code above in your browser using DataLab