Performs the fuzzy k-medoids clustering algorithm.
Usage
FKM.med (X, k, m, RS, stand, startU, conv, maxit)
Arguments
X
Matrix or data.frame
k
Number of clusters (default: 2)
m
Parameter of fuzziness (default: 1.5)
RS
Number of (random) starts (default: 1)
stand
Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU
Rational starting point for the membership degree matrix U (default: no rational start)
conv
Convergence criterion (default: 1e-9)
maxit
Maximum number of iterations (default: 1e+6)
Value
Object of class fclust, which is a list with the following components:
UMembership degree matrix
HPrototype matrix
FArray containing the covariance matrices of all the clusters (NULL for FKM.med)
clusMatrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoidVector containing the indices of the medoid objects
valueVector containing the loss function values for the RS starts
cputVector containing the computational times (user times) for the RS starts
iterVector containing the numbers of iterations for the RS starts
kNumber of clusters
mParameter of fuzziness
entDegree of fuzzy entropy (NULL for FKM.med)
vpVolume parameter (NULL for FKM.med)
deltaNoise distance (NULL for FKM.med)
standStandardization (Yes if stand=1, No if stand=0)
XcaData used in the clustering algorithm (standardized data if stand=1)
XRaw data
callMatched call
References
Krishnapuram R., Joshi A., Nasraoui O., Yi L., 2001. Low-complexity fuzzy relational clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems, 9, 595-607.
data(Mc)
for (j in2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
Mc=Mc[,-1]
## It may take more than a few secondsclust=FKM.med(Mc[,1:(ncol(Mc)-1)],k=6,m=1.1,RS=10,stand=1)