Learn R Programming

fclust (version 1.0.1)

FKM.noise: Fuzzy k-means with noise cluster

Description

Performs the fuzzy k-means clustering algorithm with noise cluster.

Usage

FKM.noise (X, k, m, delta, RS, stand, startU, conv, maxit)

Arguments

X
Matrix or data.frame
k
Number of clusters (default: 2)
m
Parameter of fuzziness (default: 2)
delta
Noise distance (default: average squared Euclidean distance between objects and prototypes from FKM using the same values of k and m)
RS
Number of (random) starts (default: 1)
stand
Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU
Rational starting point for the membership degree matrix U (default: no rational start)
conv
Convergence criterion (default: 1e-9)
maxit
Maximum number of iterations (default: 1e+6)

Value

  • Object of class fclust, which is a list with the following components:
  • UMembership degree matrix
  • HPrototype matrix
  • FArray containing the covariance matrices of all the clusters (NULL for FKM.noise)
  • clusMatrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
  • medoidVector containing the indices of the medoid objects (NULL for FKM.noise)
  • valueVector containing the loss function values for the RS starts
  • cputVector containing the computational times (user times) for the RS starts
  • iterVector containing the numbers of iterations for the RS starts
  • kNumber of clusters
  • mParameter of fuzziness
  • entDegree of fuzzy entropy (NULL for FKM.noise)
  • vpVolume parameter (NULL for FKM.noise)
  • deltaNoise distance
  • standStandardization (Yes if stand=1, No if stand=0)
  • XcaData used in the clustering algorithm (standardized data if stand=1)
  • XRaw data
  • callMatched call

References

Dave' R.N., 1991. Characterization and detection of noise in clustering. Pattern Recognition Letters, 12, 657-664.

See Also

Fclust, Fclust.index

Examples

Run this code
data(butterfly)
clust=FKM.noise(butterfly,RS=5,delta=3)

Run the code above in your browser using DataLab