Usage
FS.DAAR.heuristic.RST(decision.table, attrDescriptions = attr(decision.table,
"desc.attrs"), decisionIdx = ncol(decision.table), qualityF = X.gini,
nAttrs = NULL, allowedRandomness = 1/ncol(decision.table),
nOfProbes = ncol(decision.table), permsWithinINDclasses = FALSE,
inconsistentDecisionTable = FALSE)
Arguments
decision.table
an object of a "DecisionTable"
class representing a decision table. See SF.asDecisionTable
. attrDescriptions
a list containing possible values of attributes (columns) in
code{decision.table}. It usually corresponds to attr(decision.table, "desc.attrs")
.
decisionIdx
an integer value representing an index of the decision attribute.
qualityF
a function used for computation of the quality of attribute subsets.
Currently, the following functions are included:
nAttrs
an integer between 1 and the number of conditional attributes. It indicates
the attribute sample size for the Monte Carlo selection of candidating attributes.
If set to NULL
(default) all attributes are used and the algorithm changes
to a sta
allowedRandomness
a threshold for attribute relevance. Computations will be terminated
when the relevance of a selected attribute fall below this threshold.
nOfProbes
a number of random probes used for estimating the attribute relevance
(see the references).
permsWithinINDclasses
a logical value indicating whether the permutation test
should be conducted within indescernibility classes.
inconsistentDecisionTable
logical indicating whether the decision table is suspected
to be inconsistent.