FS.feature.subset.computation(decision.table,
method = "greedy.heuristic.superreduct", ...)
"DecisionTable"
class
representing the decision table. See
SF.asDecisionTable
.Details
.method
."FeatureSubset"
.
See FS.quickreduct.RST
or
FS.quickreduct.FRST
."greedy.heuristic.superreduct"
: it is a greedy
heuristic method which employs several quality measurements
based on RST. SeeFS.greedy.heuristic.superreduct.RST
."quickreduct.frst"
: it is a feature selection
function based on the fuzzy QuickReduct algorithm on FRST.
SeeFS.quickreduct.FRST
."quickreduct.rst"
: it is a feature selection
function based on the RST QuickReduct algorithm. SeeFS.quickreduct.RST
.method
.
Additionally, SF.applyDecTable
has been
provided to generate the new decision table.FS.quickreduct.RST
.###############################################################
## Example 1: generate reduct and new decision table using RST
###############################################################
data(RoughSetData)
decision.table <- RoughSetData$hiring.dt
## generate single superreduct
res.1 <- FS.feature.subset.computation(decision.table,
method = "quickreduct.rst")
## generate new decision table according to the reduct
new.decTable <- SF.applyDecTable(decision.table, res.1)
###############################################################
## Example 2: generate reduct and new decision table using FRST
###############################################################
data(RoughSetData)
decision.table <- RoughSetData$housing7.dt
## generate single superreduct
res.2 <- FS.feature.subset.computation(decision.table,
method = "quickreduct.frst")
## generate new decision table according to the reduct
new.decTable <- SF.applyDecTable(decision.table, res.2)
Run the code above in your browser using DataLab