
These functions are convenience functions to convert F and t test statistics to
partial Eta squared, (lm
and aov
models, these
functions give exact results. For all other cases, they return close approximations.
F_to_eta2(f, df, df_error, ci = 0.9, ...)t_to_eta2(t, df_error, ci = 0.9, ...)
F_to_epsilon2(f, df, df_error, ci = 0.9, ...)
t_to_epsilon2(t, df_error, ci = 0.9, ...)
F_to_eta2_adj(f, df, df_error, ci = 0.9, ...)
t_to_eta2_adj(t, df_error, ci = 0.9, ...)
F_to_omega2(f, df, df_error, ci = 0.9, ...)
t_to_omega2(t, df_error, ci = 0.9, ...)
F_to_f(f, df, df_error, ci = 0.9, ...)
t_to_f(t, df_error, ci = 0.9, ...)
Degrees of freedom of numerator or of the error estimate (i.e., the residuals).
Confidence Interval (CI) level
Arguments passed to or from other methods.
The t or the F statistics.
A data frame with the effect size(s) between 0-1, and confidence interval(s) (Note that for
These functions use the following formulae:
For
Confidence intervals are estimated using the Noncentrality parameter method;
These methods searches for a the best ncp
(non-central parameters) for
of the noncentral F distribution for the desired tail-probabilities,
and then convert these ncp
s to the corresponding effect sizes.
Friedman, H. (1982). Simplified determinations of statistical power, magnitude of effect and research sample sizes. Educational and Psychological Measurement, 42(2), 521-526. 10.1177/001316448204200214
Mordkoff, J. T. (2019). A Simple Method for Removing Bias From a Popular Measure of Standardized Effect Size: Adjusted Partial Eta Squared. Advances in Methods and Practices in Psychological Science, 2(3), 228-232. 10.1177/2515245919855053
Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of experimental social psychology, 74, 187-195. 10.31234/osf.io/b7z4q
Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods, 9, 164-182.
Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61(4), 532-574.
# NOT RUN {
if (require("afex")) {
data(md_12.1)
aov_ez("id", "rt", md_12.1,
within = c("angle", "noise"),
anova_table = list(correction = "none", es = "pes")
)
}
# compare to:
(etas <- F_to_eta2(
f = c(40.72, 33.77, 45.31),
df = c(2, 1, 2),
df_error = c(18, 9, 18)
))
if(require(see)) plot(etas)
if (require("lmerTest")) { # for the df_error
fit <- lmer(extra ~ group + (1 | ID), sleep)
anova(fit)
# Type III Analysis of Variance Table with Satterthwaite's method
# Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
# group 12.482 12.482 1 9 16.501 0.002833 **
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
F_to_eta2(16.501, 1, 9)
F_to_omega2(16.501, 1, 9)
F_to_epsilon2(16.501, 1, 9)
F_to_f(16.501, 1, 9)
}
## Use with emmeans based contrasts
if (require(emmeans)) {
warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
jt <- joint_tests(warp.lm, by = "wool")
F_to_eta2(jt$F.ratio, jt$df1, jt$df2)
}
# }
Run the code above in your browser using DataLab