Usage
FactoClass( dfact, metodo, dfilu = NULL , nf = 2, nfcl = 10, k.clust = 3,
scanFC = TRUE , n.max = 5000 , n.clus = 1000 ,sign = 2.0,
conso=TRUE , n.indi = 25 )
## S3 method for class 'FactoClass':
print(x, \dots)
analisis.clus(X,W)Arguments
dfact
object of class data.frame, with the data of active variables.
metodo
function of ade4 for ade4 factorial analysis, dudi.pca,Principal Component Analysis;
dudi.coa, Correspondence Analysis; witwit.coa, Internal Correspondence Analysis;
dfilu
ilustrative variables (default NULL)
nf
number of axes to use into the factorial analysis (default 2)
nfcl
number of axes to use in the classification (default 10)
k.clust
number of classes to work (default 3)
scanFC
if is TRUE, it asks in the console the values nf, nfcl y k.clust
n.max
when rowname(dfact)>=n.max, k-means is performed previous to hierarchical
clustering (default 5000)
n.clus
when rowname(fact)>=n.max, the previous k-means is performed with
n.clus groups (default 1000)
sign
threshold test value to show the characteristic variables and modalities
conso
when conso is TRUE, the process of consolidating the classification is
performed (default TRUE)
n.indi
number of indices to draw in the histogram (default 25)
x
object of class FactoClass
X
coordinates of the elements of a class
W
weights of the elements of a class