Learn R Programming

nsRFA (version 0.6-4)

GENLOGIS: Three parameter generalized logistic distribution and L-moments

Description

GENLOGIS provides the link between L-moments of a sample and the three parameter generalized logistic distribution.

Usage

f.genlogis (x, xi, alfa, k)
F.genlogis (x, xi, alfa, k)
invF.genlogis (F, xi, alfa, k)
Lmom.genlogis (xi, alfa, k)
par.genlogis (lambda1, lambda2, tau3)
rand.genlogis (numerosita, xi, alfa, k)

Arguments

x
vector of quantiles
xi
vector of genlogis location parameters
alfa
vector of genlogis scale parameters
k
vector of genlogis shape parameters
F
vector of probabilities
lambda1
vector of sample means
lambda2
vector of L-variances
tau3
vector of L-CA (or L-skewness)
numerosita
numeric value indicating the length of the vector to be generated

Value

  • f.genlogis gives the density $f$, F.genlogis gives the distribution function $F$, invF.genlogis gives the quantile function $x$, Lmom.genlogis gives the L-moments ($\lambda_1$, $\lambda_2$, $\tau_3$, $\tau_4$), par.genlogis gives the parameters (xi, alfa, k), and rand.genlogis generates random deviates.

Details

See http://en.wikipedia.org/wiki/Logistic_distribution for an introduction to the Logistic Distribution.

Definition

Parameters (3): $\xi$ (location), $\alpha$ (scale), $k$ (shape).

Range of $x$: $-\infty < x \le \xi + \alpha / k$ if $k>0$; $-\infty < x < \infty$ if $k=0$; $\xi + \alpha / k \le x < \infty$ if $k<0$.< p="">

Probability density function: $$f(x) = \frac{\alpha^{-1} e^{-(1-k)y}}{(1+e^{-y})^2}$$ where $y = -k^{-1}\log{1 - k(x - \xi)/\alpha}$ if $k \ne 0$, $y = (x-\xi)/\alpha$ if $k=0$.

Cumulative distribution function: $$F(x) = 1/(1+e^{-y})$$

Quantile function: $x(F) = \xi + \alpha[1-{(1-F)/F}^k]/k$ if $k \ne 0$, $x(F) = \xi - \alpha \log{(1-F)/F}$ if $k=0$.

$k=0$ is the logistic distribution.

L-moments

L-moments are defined for $-1

$$\lambda_1 = \xi + \alpha[1/k - \pi / \sin (k \pi)]$$ $$\lambda_2 = \alpha k \pi / \sin (k \pi)$$ $$\tau_3 = -k$$ $$\tau_4 = (1+5 k^2)/6$$

Parameters

$k=-\tau_3$, $\alpha = \frac{\lambda_2 \sin (k \pi)}{k \pi}$, $\xi = \lambda_1 - \alpha (\frac{1}{k} - \frac{\pi}{\sin (k \pi)})$.

Lmom.genlogis and par.genlogis accept input as vectors of equal length. In f.genlogis, F.genlogis, invF.genlogis and rand.genlogis parameters (xi, alfa, k) must be atomic.

See Also

rnorm, runif, EXP, GENPAR, GEV, GUMBEL, KAPPA, LOGNORM, P3; DISTPLOTS, GOFmontecarlo, Lmoments.

Examples

Run this code
data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)

camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
parameters <- par.genlogis(ll[1],ll[2],ll[4])
f.genlogis(1800,parameters$xi,parameters$alfa,parameters$k)
F.genlogis(1800,parameters$xi,parameters$alfa,parameters$k)
invF.genlogis(0.7697433,parameters$xi,parameters$alfa,parameters$k)
Lmom.genlogis(parameters$xi,parameters$alfa,parameters$k)
rand.genlogis(100,parameters$xi,parameters$alfa,parameters$k)

Rll <- regionalLmoments(x,fac); Rll
parameters <- par.genlogis(Rll[1],Rll[2],Rll[4])
Lmom.genlogis(parameters$xi,parameters$alfa,parameters$k)

Run the code above in your browser using DataLab