a <- 2.2
del.lamU <- abs(taildepCOP(cop=GHcop, para=a)$lambdaU - (2-2^(1/a)))
as.logical(del.lamU < 1E-6) # TRUE
# The simulations match Joe (2015, p. 72) for Gumbel-Hougaard
n <- 600; nsim <- 1000
SM <- sapply(1:nsim, function(i) {
cors <- semicorCOP(cop=GHcop, para=1.350, n=n)
return(c(cors$minus.semicor, cors$plus.semicor)) })
RhoM <- mean(SM[1,]); RhoP <- mean(SM[2,])
SE.RhoM <- sd(SM[1,]); SE.RhoP <- sd(SM[2,]); SE.RhoMP <- sd(SM[2,]-SM[1,])
# Minus Semi-Correlation = 0.133 (SE=0.073); Positive= 0.413 (SE=0.075)
# SE MinusRho = 0.077, PlusRho = 0.073, SE MinusRho - PlusRho = 0.106
# Joe (2015) reports 0.132, 0.415, 0.08, 0.07, 0.10, respectively.
file <- "Lcomom_study_of_GHcopPLACKETTcop.txt"
x <- data.frame(tau=NA, trho=NA, srho=NA, GHtheta=NA, PLtheta=NA,
GHT2=NA, GHT3=NA, GHT4=NA,
PLT2=NA, PLT3=NA, PLT4=NA)
write.table(x, file=file, row.names=FALSE, quote=FALSE)
n <- 25000 # Make a large number, long CPU run but seems stable
for(tau in seq(0,0.98, by=0.005)) {
thetag <- GHcop(u=NULL, v=NULL, tau=tau)$para
trho <- rhoCOP(cop=GHcop, para=thetag)
GH <- simCOP(n=n, cop=GHcop, para=thetag, points=FALSE, ploton=FALSE)
srho <- cor(GH$U, GH$V, method="spearman")
thetap <- PLACKETTpar(rho=trho)
PL <- simCOP(n=n, cop=PLACKETTcop, para=thetap, points=FALSE, ploton=FALSE)
GHl <- lmomco::lcomoms2(GH, nmom=4); PLl <- lmomco::lcomoms2(PL, nmom=4)
x <- data.frame(tau=tau, trho=trho, srho=srho,
GHtheta=thetag, PLtheta=thetap,
GHT2=mean(c(GHl$T2[1,2], GHl$T2[2,1])),
GHT3=mean(c(GHl$T3[1,2], GHl$T3[2,1])),
GHT4=mean(c(GHl$T4[1,2], GHl$T4[2,1])),
PLT2=mean(c(PLl$T2[1,2], PLl$T2[2,1])),
PLT3=mean(c(PLl$T3[1,2], PLl$T3[2,1])),
PLT4=mean(c(PLl$T4[1,2], PLl$T4[2,1])) )
write.table(x, file=file, row.names=FALSE, col.names=FALSE, append=TRUE)
}
D <- read.table(file, header=TRUE); D <- D[complete.cases(D),]
plot(D$tau, D$GHT3, ylim=c(-0.08,0.08), type="n",
xlab="KENDALL'S TAU", ylab="L-COSKEW OR NEGATED L-COKURTOSIS")
points(D$tau, D$GHT3, col=2)
points(D$tau, D$PLT3, col=1)
points(D$tau, -D$GHT4, col=4, pch=2)
points(D$tau, -D$PLT4, col=1, pch=2)
LM3 <- lm(D$GHT3~I(D$tau^1)+I(D$tau^2)+I(D$tau^4)-1)
LM4 <- lm(D$GHT4~I(D$tau^1)+I(D$tau^2)+I(D$tau^4)-1)
LM3c <- LM3$coe; LM4c <- LM4$coe
Tau <- seq(0,1, by=.01)
abline(0,0, lty=2, col=3)
lines(Tau, 0 + LM3c[1]*Tau^1 + LM3c[2]*Tau^2 + LM3c[3]*Tau^4, col=4, lwd=3)
lines(Tau, -(0 + LM4c[1]*Tau^1 + LM4c[2]*Tau^2 + LM4c[3]*Tau^4), col=2, lwd=3)
Run the code above in your browser using DataLab