Learn R Programming

SeqGSEA (version 1.12.0)

GSEnrichAnalyze: Main function of gene set enrichment analysis

Description

The main function of gene set enrichment analysis

Usage

GSEnrichAnalyze(gene.set, gene.score, gene.score.perm, weighted.type = 1)

Arguments

gene.set
a SeqGeneSet object.
gene.score
a vector of integrated gene scores in the same order as genes listed in the geneList slot of gene.set.
gene.score.perm
a matrix of integrated gene scores on permutation data sets; row: genes; col: permutation.
weighted.type
weight type for gene scores; default: 1.

Value

A SeqGeneSet object with many slots updated, such as GSEA.ES and GSEA.pval.

References

Xi Wang and Murray J. Cairns (2013). Gene Set Enrichment Analysis of RNA-Seq Data: Integrating Differential Expression and Splicing. BMC Bioinformatics, 14(Suppl 5):S16.

See Also

normES, signifES

Examples

Run this code
data(DEscore, package="SeqGSEA")
data(DSscore, package="SeqGSEA")
gene.score <- geneScore(DEscore, DSscore, method="linear", DEweight = 0.3)
data(DEscore.perm, package="SeqGSEA")
data(DSscore.perm, package="SeqGSEA")
gene.score.perm <- genePermuteScore(DEscore.perm, DSscore.perm, method="linear",  DEweight=0.3)
data(GS_example, package="SeqGSEA") 
GS_example <- GSEnrichAnalyze(GS_example, gene.score, gene.score.perm)
topGeneSets(GS_example, 5)

Run the code above in your browser using DataLab