Learn R Programming

SimDesign (version 1.1)

Generate: Generate data

Description

Generate data from a single row in the design input (see runSimulation).

Usage

Generate(condition, fixed_objects = NULL)

Arguments

condition
a single row from the design input (as a data.frame), indicating the simulation conditions
fixed_objects
object passed down from runSimulation

Value

returns a single object containing the data to be analyzed (usually a vector, matrix, or data.frame), or list)

See Also

add_missing, Attach

Examples

Run this code
## Not run: 
# 
# mygenerate <- function(condition, fixed_objects = NULL){
#     N1 <- condition$sample_sizes_group1
#     N2 <- condition$sample_sizes_group2
#     sd <- condition$standard_deviations
# 
#     group1 <- rnorm(N1)
#     group2 <- rnorm(N2, sd=sd)
#     dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)),
#                       DV = c(group1, group2))
#     # just a silly example of a simulated parameter
#     pars <- list(random_number = rnorm(1))
# 
#     list(dat=dat, parameters=pars)
# }
# 
# # similar to above, but using the Attach() function instead of indexing
# mygenerate <- function(condition, fixed_objects = NULL){
#     Attach(condition)
#     N1 <- sample_sizes_group1
#     N2 <- sample_sizes_group2
#     sd <- standard_deviations
# 
#     group1 <- rnorm(N1)
#     group2 <- rnorm(N2, sd=sd)
#     dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)),
#                       DV = c(group1, group2))
#     dat
# }
# 
# mygenerate2 <- function(condition, fixed_objects = NULL){
#     mu <- sample(c(-1,0,1), 1)
#     dat <- rnorm(100, mu)
#     dat        #return simple vector (discard mu information)
# }
# 
# mygenerate3 <- function(condition, fixed_objects = NULL){
#     mu <- sample(c(-1,0,1), 1)
#     dat <- data.frame(DV = rnorm(100, mu))
#     dat
# }
# 
# ## End(Not run)

Run the code above in your browser using DataLab