Mathematical and statistical functions for the Geometric distribution, which is commonly used to model the number of trials (or number of failures) before the first success.
Returns an R6 object inheriting from class SDistribution.
Geometric$new(prob = 0.5, qprob = NULL, trials = FALSE, decorators = NULL, verbose = FALSE)
Argument | Type | Details |
prob |
numeric | probability of success. |
qprob |
numeric | probability of failure. |
trials |
logical | number of trials or failures, see details. |
decorators
Decorator
decorators to add functionality. See details.
The Geometric distribution is parameterised with prob
or qprob
as a number between 0 and 1. These are related via, qprob
is given then prob is ignored. The logical parameter trials
determines which Geometric distribution is constructed and cannot be changed after construction. If trials
is TRUE then the Geometric distribution that models the number of trials,
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators() |
decorators |
traits() |
traits |
valueSupport() |
valueSupport |
variateForm() |
variateForm |
type() |
type |
properties() |
properties |
support() |
support |
symmetry() |
symmetry |
sup() |
sup |
inf() |
inf |
dmax() |
dmax |
dmin() |
dmin |
skewnessType() |
skewnessType |
kurtosisType() |
kurtosisType |
Statistical Methods
Link
pdf(x1, ..., log = FALSE, simplify = TRUE)
pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
quantile.Distribution
rand(n, simplify = TRUE)
rand
mean()
mean.Distribution
variance()
variance
stdev()
stdev
prec()
prec
cor()
cor
skewness()
skewness
kurtosis(excess = TRUE)
kurtosis
entropy(base = 2)
entropy
mgf(t)
mgf
cf(t)
cf
pgf(z)
pgf
median()
median.Distribution
iqr()
iqr
mode(which = "all")
mode
Parameter Methods
Link
parameters(id)
parameters
getParameterValue(id, error = "warn")
getParameterValue
setParameterValue(..., lst = NULL, error = "warn")
setParameterValue
Validation Methods
Link
liesInSupport(x, all = TRUE, bound = FALSE)
liesInSupport
liesInType(x, all = TRUE, bound = FALSE)
liesInType
Representation Methods
Link
strprint(n = 2)
strprint
print(n = 2)
print
summary(full = T)
summary.Distribution
The Geometric distribution parameterised with probability of success,
The distribution is supported on the Naturals (zero is included if modelling number of failures before success)..
The Geometric distribution is used to either refer to modelling the number of trials or number of failures before the first success.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
listDistributions
for all available distributions.
# NOT RUN {
# Different parameterisations
Geometric$new(prob = 0.2)
Geometric$new(qprob = 0.7)
# Different forms of the distribution
Geometric$new(trials = TRUE) # Number of trials before first success
Geometric$new(trials = FALSE) # Number of failures before first success
# Use description to see which form is used
Geometric$new(trials = TRUE)$description
Geometric$new(trials = FALSE)$description
# Default is prob = 0.5 and number of failures before first success
x <- Geometric$new()
# Update parameters
# When any parameter is updated, all others are too!
x$setParameterValue(qprob = 0.2)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab