# NOT RUN {
# Simulate small 4PNO dataset to demonstrate function
J = 5
N = 100
# Population item parameters
as_t = rnorm(J,mean=2,sd=.5)
bs_t = rnorm(J,mean=0,sd=.5)
# Sampling gs and ss with truncation
gs_t = rbeta(J,1,8)
ps_g = pbeta(1-gs_t,1,8)
ss_t = qbeta(runif(J)*ps_g,1,8)
theta_t <- rnorm(N)
Y_t = Y_4pno_simulate(N,J,as=as_t,bs=bs_t,gs=gs_t,ss=ss_t,theta=theta_t)
# Setting prior parameters
mu_theta=0
Sigma_theta_inv=1
mu_xi = c(0,0)
alpha_c=alpha_s=beta_c=beta_s=1
Sigma_xi_inv = solve(2*matrix(c(1,0,0,1),2,2))
burnin = 1000
# Execute Gibbs sampler
out_t = Gibbs_4PNO(Y_t,mu_xi,Sigma_xi_inv,mu_theta,
Sigma_theta_inv,alpha_c,beta_c,alpha_s,
beta_s,burnin,rep(1,J),rep(1,J),
gwg_reps=5,chain_length=burnin*2)
# Summarizing posterior distribution
OUT = cbind(apply(out_t$AS[,-c(1:burnin)],1,mean),
apply(out_t$BS[,-c(1:burnin)],1,mean),
apply(out_t$GS[,-c(1:burnin)],1,mean),
apply(out_t$SS[,-c(1:burnin)],1,mean),
apply(out_t$AS[,-c(1:burnin)],1,sd),
apply(out_t$BS[,-c(1:burnin)],1,sd),
apply(out_t$GS[,-c(1:burnin)],1,sd),
apply(out_t$SS[,-c(1:burnin)],1,sd) )
OUT = cbind(1:J,OUT)
colnames(OUT) = c('Item', 'as', 'bs', 'gs', 'ss', 'as_sd', 'bs_sd',
'gs_sd', 'ss_sd')
print(OUT, digits = 3)
# }
Run the code above in your browser using DataLab