Density, distribution function, quantile function, hazard function,
cumulative hazard function, and random
generation for the Gompertz distribution with parameters
shape
and scale.
dgompertz(x, shape = 1, scale = 1, log = FALSE, param = c("default", "canonical"))
pgompertz(q, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE,
param = c("default", "canonical"))
qgompertz(p, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE,
param = c("default", "canonical"))
hgompertz(x, shape = 1, scale = 1, log = FALSE, param = c("default", "canonical"))
Hgompertz(x, shape = 1, scale = 1, log.p = FALSE, param = c("default", "canonical"))
rgompertz(n, shape = 1, scale = 1, param = c("default", "canonical"))vector of quantiles.
vector of probabilities.
number of observations. If length(n) > 1, the length
is taken to be the number required.
Parameters: shape, defaulting to 1, and scale, defaulting to 1.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P(X \le x)\), otherwise, \(P(X > x)\).
See 'details' below.
dgompertz gives the density,
pgompertz gives the distribution function,
qgompertz gives the quantile function,
hgompertz gives the hazard function,
Hgompertz gives the cumulative hazard function, and
rgompertz generates random deviates.
Invalid arguments will result in return value NaN, with a warning.
The Gompertz distribution with shape parameter \(a\) and
scale parameter \(\sigma\) has hazard given by
$$h(x) = a \exp(x/\sigma)$$
for \(x \ge 0\).
If param = "canonical", then then a --> a/b, so that b is a
true scale parameter (for any fixed a), and b is an 'AFT parameter'.