# NOT RUN {
############################
# Training
############################
# Create simulated data
data <- RemixAutoML::FakeDataGenerator(
  Correlation = 0.70,
  N = 1000L,
  ID = 2L,
  FactorCount = 2L,
  AddDate = TRUE,
  AddComment = FALSE,
  ZIP = 2L,
  TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run algo
data <- RemixAutoML::H2OAutoencoder(
  # Select the service
  AnomalyDetection = TRUE,
  DimensionReduction = TRUE,
  # Data related args
  data = data,
  ValidationData = NULL,
  Features = names(data)[2L:(ncol(data)-1L)],
  per_feature = FALSE,
  RemoveFeatures = TRUE,
  ModelID = "TestModel",
  model_path = getwd(),
  # H2O Environment
  NThreads = max(1L, parallel::detectCores()-2L),
  MaxMem = "28G",
  H2OStart = TRUE,
  H2OShutdown = TRUE,
  # H2O ML Args
  LayerStructure = NULL,
  ReturnLayer = 4L,
  Activation = "Tanh",
  Epochs = 5L,
  L2 = 0.10,
  ElasticAveraging = TRUE,
  ElasticAveragingMovingRate = 0.90,
  ElasticAveragingRegularization = 0.001)
############################
# Scoring
############################
# Create simulated data
data <- RemixAutoML::FakeDataGenerator(
  Correlation = 0.70,
  N = 1000L,
  ID = 2L,
  FactorCount = 2L,
  AddDate = TRUE,
  AddComment = FALSE,
  ZIP = 2L,
  TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run algo
data <- RemixAutoML::H2OAutoencoderScoring(
  # Select the service
  AnomalyDetection = TRUE,
  DimensionReduction = TRUE,
  # Data related args
  data = data,
  Features = names(data)[2L:ncol(data)],
  RemoveFeatures = TRUE,
  per_feature = FALSE,
  ModelObject = NULL,
  ModelID = "TestModel",
  model_path = getwd(),
  # H2O args
  NThreads = max(1L, parallel::detectCores()-2L),
  MaxMem = "28G",
  H2OStart = TRUE,
  H2OShutdown = TRUE,
  ReturnLayer = 4L)
# }
Run the code above in your browser using DataLab