Learn R Programming

copBasic (version 2.0.1)

HRcop: The Hüsler{Husler}-Reiss Extreme Value Copula

Description

The Hüsler{Husler}-Reiss copula (Joe, 2014, p. 176) is $$\mathbf{C}_{\Theta}(u,v) = \mathbf{HR}(u,v) = \mathrm{exp}{-x \Phi(X) - y\Phi(Y)}\mbox{,}$$ where $\Theta \ge 0$, $x = - \log(u)$, $y = - \log(v)$, $\Phi(.)$ is the cumulative distribution function of the standard normal distribution, $X$ and $Y$ are defined as: $$X = \frac{1}{\Theta} + \frac{\Theta}{2} \log[x/y]\mbox{\ and\ } Y = \frac{1}{\Theta} + \frac{\Theta}{2} \log[y/x]\mbox{.}$$ As $\Theta \rightarrow 0^{+}$, the copula limits to independence ($\mathbf{\Pi}$; P). The copula here is a bivariate extreme value copula ($BEV$), and the parameter $\Theta$ requires numerical methods.

Usage

HRcop(u, v, para=NULL, ...)

Arguments

u
Nonexceedance probability $u$ in the $X$ direction;
v
Nonexceedance probability $v$ in the $Y$ direction;
para
A vector (single element) of parameters---the $\Theta$ parameter of the copula; and
...
Additional arguments to pass.

Value

  • Value(s) for the copula are returned.

encoding

utf8

concept

Hüsler{Husler}-Reiss extreme value copula

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

P, GHcop, GLcop, rhobevCOP

Examples

Run this code
# Parameter Theta = pi recovery through Blomqvist's Beta (Joe, 2014, p. 176)
qnorm(1 - log(1+blomCOP(cop=HRcop, para=pi))/(2*log(2)))^(-1)

Run the code above in your browser using DataLab