Learn R Programming

ks (version 1.8.11)

Hscv: Smoothed cross-validation (SCV) bandwidth selector

Description

SCV bandwidth for 1- to 6-dimensional data.

Usage

Hscv(x, nstage=2, pre="sphere", pilot="samse", Hstart, binned=FALSE, 
     bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="nlm",
     Sdr.flag=FALSE)
Hscv.diag(x, nstage=2, pre="scale", pilot="samse", Hstart, binned=FALSE, 
     bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="nlm")
hscv(x, nstage=2, binned=TRUE, bgridsize, plot=FALSE)

Arguments

x
vector or matrix of data values
pre
"scale" = pre.scale, "sphere" = pre.sphere
pilot
"amse" = AMSE pilot bandwidths "samse" = single SAMSE pilot bandwidth "unconstr" = single unconstrained pilot bandwidth "dscalar" = single pilot bandwidth for deriv.order > 0 "dunconstr"
Hstart
initial bandwidth matrix, used in numerical optimisation
binned
flag for binned kernel estimation. Default is FALSE.
bgridsize
vector of binning grid sizes
amise
flag to return the minimal scaled SCV value. Default is FALSE.
deriv.order
derivative order
verbose
flag to print out progress information. Default is FALSE.
optim.fun
optimiser function: one of nlm or optim.
nstage
number of stages in the SCV bandwidth selector (1 or 2)
Sdr.flag
flag to compute the symmetrizer matrix explicitly for pilot bandwidths for deriv.order>0. Default is FALSE.
plot
flag to display plot of SCV(h) vs h (1-d only). Default is FALSE.

Value

  • SCV bandwidth. If amise=TRUE then the minimal scaled SCV value is returned too.

Details

hscv is the univariate SCV selector of Jones, Marron & Park (1991). Hscv is a multivariate generalisation of this, see Duong & Hazelton (2005). Use Hscv for full bandwidth matrices and Hscv.diag for diagonal bandwidth matrices. For SAMSE pilot bandwidths, see Duong & Hazelton (2005). Unconstrained pilot bandwidths are from Chacon & Duong (2011).

For d = 1, the selector hscv is not always stable for large sample sizes with binning. Examine the plot from hscv(, plot=TRUE) to determine the appropriate smoothness of the SCV function. Any non-smoothness is due to the discretised nature of binned estimation. For details about the advanced options for binned, Hstart, Sdr.flag, see Hpi.

References

Chacon, J.E. & Duong, T. (2011) Unconstrained pilot selectors for smoothed cross validation. Australian & New Zealand Journal of Statistics. 53, 331-351. Duong, T. & Hazelton, M.L. (2005) Cross-validation bandwidth matrices for multivariate kernel density estimation. Scandinavian Journal of Statistics. 32, 485-506.

Jones, M.C., Marron, J.S. & Park, B.U. (1991) A simple root n bandwidth selector. Annals of Statistics 19, 1919-1932.

See Also

Hbcv, Hlscv, Hpi

Examples

Run this code
data(unicef)
Hscv(unicef)
Hscv(unicef, binned=TRUE)
hscv(unicef[,1])

Run the code above in your browser using DataLab