Learn R Programming

CDM (version 4.991-1)

IRT.irfprob: S3 Methods for Extracting Item Response Functions

Description

This S3 method extracts item response functions evaluated at a grid of abilities (skills). Item response functions can be plotted using the IRT.irfprobPlot function.

Usage

IRT.irfprob(object, ...)
"IRT.irfprob"(object, ...)
"IRT.irfprob"(object, ...)
"IRT.irfprob"(object, ...)
"IRT.irfprob"(object, ...)
"IRT.irfprob"(object, ...)

Arguments

object
Object of classes din, gdina, mcdina, gdm or slca.
...
More arguments to be passed.

Value

An array with item response probabilities (items $\times$ categories $\times$ skill classes [$\times$ group]) and attributes
theta
Uni- or multidimensional skill space (theta grid in item response models).
prob.theta
Probability distribution of theta
skillspace
Design matrix and estimated parameters for skill space distribution (only for IRT.posterior.slca)
G
Number of groups

See Also

Plot functions for item response curves: IRT.irfprobPlot. For extracting the individual likelihood or posterior see IRT.likelihood or IRT.posterior.

Examples

Run this code
## Not run: 	
# #############################################################################
# # EXAMPLE 1: Extracting item response functions mcdina model
# #############################################################################
# 
# data(data.cdm02)
# dat <- data.cdm02$data
# q.matrix <- data.cdm02$q.matrix
# 
# # estimate model (only 5 iterations for illustration purposes)
# mod1 <- mcdina( dat , q.matrix=q.matrix , maxit = 5)
# # extract item response functions
# prmod1 <- IRT.irfprob(mod1)
# str(prmod1)
# ## End(Not run)

Run the code above in your browser using DataLab