## Not run:
# library(BIFIEsurvey)
#
# #############################################################################
# # EXAMPLE 1: Multiple group DINA model with TIMSS data | Cluster sample
# #############################################################################
#
# data(data.timss11.G4.AUT.part)
# dat <- data.timss11.G4.AUT.part$data
# q.matrix <- data.timss11.G4.AUT.part$q.matrix2
# # extract items
# items <- paste( q.matrix$item )
#
# # generate replicate design
# rdes <- IRT.repDesign( data= dat, wgt = "TOTWGT" , jktype="JK_TIMSS" ,
# jkzone = "JKCZONE" , jkrep = "JKCREP" )
#
# #--- Model 1: fit multiple group GDINA model
# mod1 <- gdina( dat[,items] , q.matrix =q.matrix[,-1] ,
# weights=dat$TOTWGT , group=dat$female +1 )
# # jackknife Model 1
# jmod1 <- IRT.jackknife( object = mod1 , repDesign = rdes )
# summary(jmod1)
# coef(jmod1)
# vcov(jmod1)
#
# #############################################################################
# # EXAMPLE 2: DINA model | Simple random sampling
# #############################################################################
#
# data(sim.dina)
# data(sim.qmatrix)
# dat <- sim.dina
# q.matrix <- sim.qmatrix
#
# # generate replicate design with 50 jackknife zones (50 random groups)
# rdes <- IRT.repDesign( data= dat , jktype="JK_RANDOM" , ngr=50 )
#
# #--- Model 1: DINA model
# mod1 <- gdina( dat, q.matrix =q.matrix , rule="DINA")
# summary(mod1)
# # jackknife DINA model
# jmod1 <- IRT.jackknife( object = mod1 , repDesign = rdes )
# summary(jmod1)
#
# #--- Model 2: DINO model
# mod2 <- gdina( dat, q.matrix =q.matrix , rule="DINO")
# summary(mod2)
# # jackknife DINA model
# jmod2 <- IRT.jackknife( object = mod2 , repDesign = rdes )
# summary(jmod2)
# IRT.compareModels( mod1 , mod2 )
#
# # statistical inference for derived parameters
# derived.parameters <- list( "skill1" = ~ 0 + I(prob_skillV1_lev1_group1) ,
# "skilldiff12" = ~ 0 + I( prob_skillV2_lev1_group1 - prob_skillV1_lev1_group1 ) ,
# "skilldiff13" = ~ 0 + I( prob_skillV3_lev1_group1 - prob_skillV1_lev1_group1 )
# )
# jmod2a <- IRT.derivedParameters( jmod2 , derived.parameters=derived.parameters )
# summary(jmod2a)
# coef(jmod2a)
# ## End(Not run)
Run the code above in your browser using DataLab