Last chance! 50% off unlimited learning
Sale ends in
glmssn
Information CriteriaInfoCritCompare
displays important model criteria for each object
of class glmssn object in the model list.InfoCritCompare(model.list)
list(model1, model2, ...)
InfoCritCompare
returns a data.frame of the model criteria for
each specified glmssn-class object. These are useful for comparing and
selecting models. The columns in the data.frame are described below. In the
description below 'obs' is an observed data value, 'pred' is its prediction
using cross-validation, and 'predSE' is the prediction standard error using
cross-validation.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]InfoCritCompare
displays important model criteria that can be
used to compare and select spatial statistical models. For instance, spatial
models can be compared with non-spatial models, other spatial models, or both.glmssn
, summary.glmssn
, AIC
,
CrossValidationStatsSSN
library(SSN)
data(modelFits)
compare.models <- InfoCritCompare(list(fitNS, fitRE, fitSp, fitSpRE1, fitSpRE2))
# Examine the model criteria
compare.models
# Compare the AIC values for all models with random effects
compare.models[c(2,4,5),c("Variance_Components","AIC")]
# Compare the RMSPE for the spatial models
compare.models[c(3,4,5),c("Variance_Components","RMSPE")]
# Compare the RMSPE between spatial and non-spatial models
compare.models[c(1,3),c("formula","Variance_Components", "RMSPE")]
Run the code above in your browser using DataLab