Learn R Programming

brr (version 1.0.0)

Intrinsic2Inference: Intrinsic inference on the rates ratio based on the second intrinsic discrepancy.

Description

Intrinsic inference on the rates ratio based on the second intrinsic discrepancy.

Usage

intrinsic2_phi0(phi0, x, y, S, T, a, b, c = 0.5, d = 0, beta_range = TRUE, tol = 1e-08, ...)
intrinsic2_phi0_sims(phi0, x, y, S, T, a, b, c = 0.5, d = 0, nsims = 1e+06)
intrinsic2_estimate(x, y, S, T, a, b, c = 0.5, d = 0, otol = 1e-08, ...)
intrinsic2_H0(phi.star, alternative, x, y, S, T, a, b, c = 0.5, d = 0, ...)
intrinsic2_bounds(x, y, S, T, a, b, c = 0.5, d = 0, conf = 0.95, parameter = "phi", otol = 1e-08, ...)

Arguments

phi0
the proxy value of phi
x,y
Observed counts
S,T
sample sizes
a,b,c,d
Prior parameters
beta_range
logical, if TRUE (default), an internal method is used to avoid a possible failure in numerical integration; see the main vignette for details
tol
accuracy requested
...
arguments passed to integrate
nsims
number of simulations
otol
desired accuracy for optimization
phi.star
the hypothesized value of phi
alternative
alternative hypothesis, "less" for H1: phi0 < phi.star, "greater" for H1: phi0 > phi.star
conf
credibility level
parameter
parameter of interest: relative risk "phi" or vaccine efficacy "VE"

Value

intrinsic2_phi0 returns the posterior expected loss, intrinsic2_estimate returns the intrinsic estimate, intrinsic2_H0 performs intrinsic hypothesis testing, and intrinsic2_bounds returns the intrinsic credibility interval.

Examples

Run this code
a<-2; b<-10; c<-1/2; d<-0; S<-100; T<-S; x<-0; y<-20
intrinsic2_phi0(0.5, x, y, S, T, a, b, c, d)
intrinsic2_phi0_sims(0.5, x, y, S, T, a, b, c, d)
intrinsic2_estimate(x, y, S, T, a, b, c, d)
bounds <- intrinsic2_bounds(x, y, S, T, a, b, c, d, conf=0.95); bounds
ppost_phi(bounds[2], a, b, c, d, S, T,  x, y)- ppost_phi(bounds[1], a, b, c, d, S, T, x, y)

Run the code above in your browser using DataLab