dinv.gaussian(x, mu, lambda)
pinv.gaussian(q, mu, lambda)
rinv.gaussian(n, mu, lambda)
dinv.gaussian
gives the density,
pinv.gaussian
gives the distribution function, and rinv.gaussian
generates random deviates.inv.gaussianff
, the Taraldsen, G. and Lindqvist, B. H. (2005) The multiple roots simulation algorithm, the inverse Gaussian distribution, and the sufficient conditional Monte Carlo method. Preprint Statistics No. 4/2005, Norwegian University of Science and Technology, Trondheim, Norway.
inv.gaussianff
.x = seq(-0.05, 4, len=300)
plot(x, dinv.gaussian(x, mu=1, lambda=1), type="l", col="blue", las=1,
main="blue is density, red is cumulative distribution function")
abline(h=0, col="blue", lty=2)
lines(x, pinv.gaussian(x, mu=1, lambda=1), type="l", col="red")
Run the code above in your browser using DataLab