Unlimited learning, half price | 50% off
Get 50% off unlimited learning

logcondens (version 2.0.2)

Jfunctions: Numerical Routine J and Some Derivatives

Description

J00 represents the function $J(x, y, v),$ where for real numbers $x, y$ and $v \in [0, 1],$ J(x,y,v)=0vexp((1t)x+ty)dt=exp(x+v(yx))exp(x)yx. The functions Jab give the respective derivatives $J_{ab}$ for $v = 1$, i.e. Jab(x,y)=a+bxaybJ(x,y). Specifically, J10(x,y)=exp(y)exp(x)(yx)exp(x)(yx)2; J11(x,y)=(yx)(exp(x)+exp(y))+2(exp(y)exp(x))(yx)3; J20(x,y)=2exp(y)exp(x)(yx)exp(x)(yx)2exp(x)(yx)3.

Usage

J00(x, y, v)
J10(x, y)
J11(x, y)
J20(x, y)

Arguments

x
Vector of length $d$ with real entries.
y
Vector of length $d$ with real entries.
v
Number in $[0, 1]^d$.

Value

  • Value of the respective function.

References

Duembgen, L, Huesler, A. and Rufibach, K. (2010) Active set and EM algorithms for log-concave densities based on complete and censored data. Technical report 61, IMSV, Univ. of Bern, available at http://arxiv.org/abs/0707.4643. Duembgen, L. and Rufibach, K. (2010) logcondens: Computations Related to Univariate Log-Concave Density Estimation. Journal of Statistical Software, to appear.