Last chance! 50% off unlimited learning
Sale ends in
For a multitype point pattern,
estimate the multitype
Jdot(X, i, eps=NULL, r=NULL, breaks=NULL, …, correction=NULL)
The observed point pattern,
from which an estimate of the multitype
The type (mark value)
of the points in X
from which distances are measured.
A character string (or something that will be converted to a
character string).
Defaults to the first level of marks(X)
.
A positive number. The resolution of the discrete approximation to Euclidean distance (see below). There is a sensible default.
numeric vector. The values of the argument
This argument is for internal use only.
Ignored.
Optional. Character string specifying the edge correction(s)
to be used. Options are "none"
, "rs"
, "km"
,
"Hanisch"
and "best"
.
Alternatively correction="all"
selects all options.
An object of class "fv"
(see fv.object
).
Essentially a data frame containing six numeric columns
the recommended
estimator of
the values of the argument
the Kaplan-Meier
estimator of
the ``reduced sample'' or ``border correction''
estimator of
the Hanisch-style
estimator of
the ``uncorrected''
estimator of Gdot
and Fest
.
the theoretical value of
The argument i
is interpreted as
a level of the factor X$marks
. It is converted to a character
string if it is not already a character string.
The value i=1
does not
refer to the first level of the factor.
This function Jdot
and its companions
Jcross
and Jmulti
are generalisations of the function Jest
to multitype point patterns.
A multitype point pattern is a spatial pattern of points classified into a finite number of possible ``colours'' or ``types''. In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.
The argument X
must be a point pattern (object of class
"ppp"
) or any data that are acceptable to as.ppp
.
It must be a marked point pattern, and the mark vector
X$marks
must be a factor.
The argument i
will be interpreted as a
level of the factor X$marks
. (Warning: this means that
an integer value i=3
will be interpreted as the number 3,
not the 3rd smallest level.)
The ``type
An estimate of Jest
and Van Lieshout and Baddeley (1996))
of the points of type
This algorithm estimates X
. It assumes that X
can be treated
as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through
a bounded window.
The window (which is specified in X
as Window(X)
)
may have arbitrary shape.
Biases due to edge effects are
treated in the same manner as in Jest
,
using the Kaplan-Meier and border corrections.
The main work is done by Gmulti
and Fest
.
The argument r
is the vector of values for the
distance
Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in point patterns. Statistica Neerlandica 50, 344--361.
Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multivariate point patterns. Scandinavian Journal of Statistics 26, 511--532.
# NOT RUN {
# Lansing woods data: 6 types of trees
woods <- lansing
# }
# NOT RUN {
Jh. <- Jdot(woods, "hickory")
plot(Jh.)
# diagnostic plot for independence between hickories and other trees
Jhh <- Jest(split(woods)$hickory)
plot(Jhh, add=TRUE, legendpos="bottom")
# }
# NOT RUN {
# synthetic example with two marks "a" and "b"
pp <- runifpoint(30) %mark% factor(sample(c("a","b"), 30, replace=TRUE))
J <- Jdot(pp, "a")
# }
Run the code above in your browser using DataLab