
Jeffreys(ltm.obj = NULL, inf.mat = NULL, inf.func = NULL, return = "prior", spl.method = "natural", range.int = c(-Inf, Inf))
ltm
, grm
, or gpcm
functions).
plot
function).
splinefun
method to use in constructing an information function; only used if inf.mat is supplied.
splinefun
), supplying an ltm object or information function directly will generally be more accurate. If inf.mat is supplied, the information should be evaluated at a large number of points over a wide range, to maintain accuracy.Note that currently, range.int must be within (-10, 10) for grm
and gpcm
objects. If a grm
or gpcm
object is supplied and range.int is outside this range, the range will be reset.
rJeffreys
, which randomly generates latent trait values distributed asccording to a Jeffreys prior density, and iota
and iota.c
, which calculate Lindley information quantities, possibly using the Jeffreys prior. Also see splinefun
, ltm
, grm
, and gpcm
.
# using an ltm object
ltm.lsat <- ltm(LSAT~z1, IRT=FALSE)
jp.lsat <- Jeffreys(ltm.lsat)
jp.lsat(0)
# using inf.mat
inf.lsat <- plot(ltm.lsat, type="IIC", item=0, plot=FALSE, z=seq(-15, 15, length=10000))
jp.lsat <- Jeffreys(inf.mat=inf.lsat)
jp.lsat(0)
# returning normalizing constant
Jeffreys(ltm.lsat, return="nc")
Jeffreys(inf.mat=inf.lsat, return="nc")
Run the code above in your browser using DataLab