data(lansing)
  # inhomogeneous pattern of maples
  X <- unmark(lansing[lansing$marks == "maple",])
  <testonly>sub <- sample(c(TRUE,FALSE), X$n, replace=TRUE, prob=c(0.1,0.9))
     X <- X[sub , ]</testonly>
  # fit spatial trend
  fit <- ppm(X, ~ polynom(x,y,2), Poisson())
  # predict intensity values at points themselves
  lambda <- predict(fit, locations=X, type="trend")
  # inhomogeneous K function
  Ki <- Kinhom(X, lambda)
  plot(Ki)
  # SIMULATED DATA
  # known intensity function
  lamfun <- function(x,y) { 100 * x }
  # inhomogeneous Poisson process
  Y <- rpoispp(lamfun, 100, owin())
  # evaluate intensity at points of pattern
  lambda <- lamfun(Y$x, Y$y)
  # inhomogeneous K function
  Ki <- Kinhom(Y, lambda)
  plot(Ki)Run the code above in your browser using DataLab