Last chance! 50% off unlimited learning
Sale ends in
Estimates the locally-rescaled
Kscaled(X, lambda=NULL, …, r = NULL, breaks = NULL,
rmax = 2.5,
correction=c("border", "isotropic", "translate"),
renormalise=FALSE, normpower=1,
sigma=NULL, varcov=NULL) Lscaled(…)
The observed data point pattern,
from which an estimate of the locally scaled "ppp"
or in a format recognised by as.ppp()
.
Optional.
Values of the estimated intensity function.
Either a vector giving the intensity values
at the points of the pattern X
,
a pixel image (object of class "im"
) giving the
intensity values at all locations, a function(x,y)
which
can be evaluated to give the intensity value at any location,
or a fitted point process model (object of class "ppm"
).
Arguments passed from Lscaled
to Kscaled
and from Kscaled
to density.ppp
if lambda
is omitted.
vector of values for the argument
This argument is for internal use only.
maximum value of the argument
A character vector containing any selection of the
options "border"
,
"isotropic"
, "Ripley"
,
"translate"
, "translation"
,
"none"
or "best"
.
It specifies the edge correction(s) to be applied.
Alternatively correction="all"
selects all options.
Logical. Whether to renormalise the estimate. See Details.
Integer (usually either 1 or 2). Normalisation power. See Details.
Optional arguments passed to density.ppp
to control the smoothing bandwidth, when lambda
is
estimated by kernel smoothing.
An object of class "fv"
(see fv.object
).
Essentially a data frame containing at least the following columns,
the vector of values of the argument
vector of values of
Kscaled
computes an estimate of the Lscaled
computes the corresponding
Locally scaled point processes are a class of models for inhomogeneous point patterns, introduced by Hahn et al (2003). They include inhomogeneous Poisson processes, and many other models.
The template
The template
Kscaled
computes an estimate of the template Lscaled
computes the corresponding
The locally scaled interpoint distances are computed using an approximation proposed by Hahn (2007). The Euclidean distance between two points is multiplied by the average of the square roots of the intensity values at the two points.
The argument lambda
should supply the
(estimated) values of the intensity function
containing the values
of the intensity function at the points of the pattern X
.
(object of class "im"
)
assumed to contain the values of the intensity function
at all locations in the window.
which can be evaluated to give values of the intensity at any locations.
if lambda
is omitted, then it will be estimated using
a `leave-one-out' kernel smoother.
If lambda
is a numeric vector, then its length should
be equal to the number of points in the pattern X
.
The value lambda[i]
is assumed to be the
the (estimated) value of the intensity
NA
's are not allowed.
If lambda
is a pixel image, the domain of the image should
cover the entire window of the point pattern. If it does not (which
may occur near the boundary because of discretisation error),
then the missing pixel values
will be obtained by applying a Gaussian blur to lambda
using
blur
, then looking up the values of this blurred image
for the missing locations.
(A warning will be issued in this case.)
If lambda
is a function, then it will be evaluated in the
form lambda(x,y)
where x
and y
are vectors
of coordinates of the points of X
. It should return a numeric
vector with length equal to the number of points in X
.
If lambda
is omitted, then it will be estimated using
a `leave-one-out' kernel smoother,
as described in Baddeley, Moller
and Waagepetersen (2000). The estimate lambda[i]
for the
point X[i]
is computed by removing X[i]
from the
point pattern, applying kernel smoothing to the remaining points using
density.ppp
, and evaluating the smoothed intensity
at the point X[i]
. The smoothing kernel bandwidth is controlled
by the arguments sigma
and varcov
, which are passed to
density.ppp
along with any extra arguments.
If renormalise=TRUE
, the estimated intensity lambda
is multiplied by Kinhom
,
reducing the variability and bias of the estimate
in small samples and in cases of very strong inhomogeneity.
Edge corrections are used to correct bias in the estimation
of Kest
.
See Kest
for details of the edge corrections
and the options for the argument correction
.
The pair correlation function can also be applied to the
result of Kscaled
; see pcf
and pcf.fv
.
Baddeley, A., Moller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329--350.
Hahn, U. (2007) Global and Local Scaling in the Statistics of Spatial Point Processes. Habilitationsschrift, Universitaet Augsburg.
Hahn, U., Jensen, E.B.V., van Lieshout, M.N.M. and Nielsen, L.S. (2003) Inhomogeneous spatial point processes by location-dependent scaling. Advances in Applied Probability 35, 319--336.
Prokesova, M., Hahn, U. and Vedel Jensen, E.B. (2006) Statistics for locally scaled point patterns. In A. Baddeley, P. Gregori, J. Mateu, R. Stoica and D. Stoyan (eds.) Case Studies in Spatial Point Pattern Modelling. Lecture Notes in Statistics 185. New York: Springer Verlag. Pages 99--123.
# NOT RUN {
data(bronzefilter)
X <- unmark(bronzefilter)
K <- Kscaled(X)
fit <- ppm(X, ~x)
lam <- predict(fit)
K <- Kscaled(X, lam)
# }
Run the code above in your browser using DataLab