Learn R Programming

eRm (version 0.9-2)

LRtest: Computation of Andersen's LR-test.

Description

This LR-test is based on subject subgroup splitting.

Usage

## S3 method for class 'Rm':
LRtest(object, splitcr = "median", se = FALSE)
## S3 method for class 'LR':
plotGOF(x, beta.subset = "all", xlab = "Beta Group 1", 
ylab = "Beta Group 2", ylim = c(-3, 3), xlim = c(-3, 3), type = "p", ...)
## S3 method for class 'LR':
print(x,...)
## S3 method for class 'LR':
summary(object,...)

Arguments

object
Object of class Rm.
splitcr
Split criterion for subject raw score splitting. all.r corresponds to a full raw score split, median uses the median as split criterion, mean performs a mean-split. Optionally splitcr can also be
se
If TRUE standard errors for beta's are computed.
x
Object of class LR for visualizing the fit of single items.
beta.subset
If "all", all items are plotted. Otherwise numeric subset vector can be specified.
xlab
Label on x-axis.
ylab
Label on y-axis.
xlim
Limits on x-axis.
ylim
Limits on y-axis.
type
Plotting type.
...
Additional graphical parameters.

Value

  • LRtest returns an object of class LR containing:
  • LRLR-value.
  • dfDegrees of freedom of the test statistic.
  • ChisqChi-square value with corresponding df.
  • pvalueP-value of the test.
  • likgroupLog-likelihood values for the subgroups
  • betalistList of beta parameters for the subgroups.
  • selistList of standard errors of beta's.
  • etalistList of eta parameters for the subgroups.

References

Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations, Recent Developements, and Applications. Springer. Mair, P., and Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1-20. Mair, P., and Hatzinger, R. (2007). CML based estimation of extended Rasch models with the eRm package in R. Psychology Science, 49, 26-43.

See Also

Waldtest

Examples

Run this code
# LR-test on dichotomous Rasch model with user-defined split
splitvec <- sample(1:3, 100, replace = TRUE)
data(raschdat1, splitcr = splitvec)
res <- RM(raschdat1)
lrres <- LRtest(res)
lrres
summary(lrres)
plotGOF(lrres)

Run the code above in your browser using DataLab