Learn R Programming

logcondens (version 2.0.6)

Lhat_eta: Value of the Log-Likelihood Function L, where Input is in Eta-Parametrization

Description

Gives the value of $$L(\phi) = \sum_{i=1}^m w_i \phi(x_i) - \int_{x_1}^{x_m} \exp(\phi(t)) dt$$ where $\phi$ is parametrized via $${\bold{\eta}}({\bold{\phi}}) = \Bigl(\phi_1, \Bigl(\eta_1 + \sum_{j=2}^i (x_i-x_{i-1})\eta_i\Bigr)_{i=2}^m\Bigr).$$

Usage

Lhat_eta(x, w, eta)

Arguments

x
Vector of independent and identically distributed numbers, with strictly increasing entries.
w
Optional vector of nonnegative weights corresponding to ${\bold{x}_m}$.
eta
Some vector ${\bold{\eta}}$ of the same length as ${\bold{x}}$ and ${\bold{w}}$.

Value

  • Value $L({\bold{\phi}}) = L({\bold{\phi}}({\bold{\eta}}))$ of the log-likelihood function is returned.