TMFG
)Applies the Local/Global method to estimate
a Gaussian Graphical Model (GGM) using a TMFG
-filtered network
(see and cite Barfuss et al., 2016)
LoGo(data, cliques, separators, normal = TRUE, na.data = c("pairwise",
"listwise", "fiml", "none"), partial = TRUE, ...)
Must be a dataset
Cliques defined in the network. Input can be a list or matrix
Separators defined in the network. Input can be a list or matrix
Should data be transformed to a normal distribution?
Defaults to TRUE
(computes correlations using the cor_auto
function).
Set to FALSE
for Pearson's correlations
Should the output network's connections be the partial correlation between two nodes given all other nodes?
Defaults to TRUE
, which returns a partial correlation matrix.
Set to FALSE
for a sparse inverse covariance matrix
Additional arguments (deprecated arguments)
Returns the sparse LoGo-filtered inverse covariance matrix (partial = FALSE
)
or LoGo-filtered partial correlation matrix (partial = TRUE
)
Barfuss, W., Massara, G. P., Di Matteo, T., & Aste, T. (2016). Parsimonious modeling with information filtering networks. Physical Review E, 94, 062306. doi: 10.1103/PhysRevE.94.062306
# NOT RUN {
LoGonet <- LoGo(neoOpen, partial = TRUE)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab