LocSig(Z, numrep = 1000, block.length = NULL, bootfun = "mean", alpha = 0.05, bca = FALSE, ...)## S3 method for class 'LocSig':
plot(x, loc = NULL, nx = NULL, ny = NULL, ...)
floor(sqrt(n))
is used. If 1, then the IID bootstrap is performed, and the BCa method may be used to find CI's, if bca
is TRUE.statistic
argument for function tsboot
(or boot
if block.length
= 1).alpha
to obtain (1-alpha
)*100 percent CI's for bootfun
.block.length
= 1. Will give a warning if this argument is TRUE, and block.length
> 1, and will use the percentile method.LocSig
.loc
is NULL, then nx
and ny
must be supplied. These give the number of rows and columns of a grid to make an image (using as.image
) for plotting. If these are used, the data Z
must be fLocSig
: optional additional arguments to the tsboot
(or boot
if block.length
=1) function.
plot.LocSig
: optional additional arguments to image.plot
.x
). So, at each bootstrap iteration, entire blocks of rows of x are resampled with replacement. If Z
represents forecast errors at grid points, and bootfun
=spatbiasFS
, tsboot
, boot
, boot.ci
, MCdof
, sig.cor.t
, sig.cor.Z
, cor.test
, image.plot
, as.image
data(GFSNAMfcstEx)
data(GFSNAMobsEx)
data(GFSNAMlocEx)
id <- GFSNAMlocEx[,"Lon"] >=-90 & GFSNAMlocEx[,"Lon"] <= -75 & GFSNAMlocEx[,"Lat"] <= 40
look <- LocSig(GFSNAMfcstEx[,id] - GFSNAMobsEx[,id], numrep=500)
stats(look)
plot(look, loc=GFSNAMlocEx[id,])
Run the code above in your browser using DataLab