50% off: Unlimited data and AI learning.
State of Data and AI Literacy Report 2025

distr6 (version 1.6.4)

Logistic: Logistic Distribution Class

Description

Mathematical and statistical functions for the Logistic distribution, which is commonly used in logistic regression and feedforward neural networks.

Arguments

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

Logis(mean = 0, scale = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Logistic

Public fields

name

Full name of distribution.

short_name

Short name of distribution for printing.

description

Brief description of the distribution.

packages

Packages required to be installed in order to construct the distribution.

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

Logistic$new(mean = NULL, scale = NULL, sd = NULL, decorators = NULL)

Arguments

mean

(numeric(1)) Mean of the distribution, defined on the Reals.

scale

(numeric(1)) Scale parameter, defined on the positive Reals.

sd

(numeric(1)) Standard deviation of the distribution as an alternate scale parameter, sd = scale*pi/sqrt(3). If given then scale is ignored.

decorators

(character()) Decorators to add to the distribution during construction.

Method mean()

The arithmetic mean of a (discrete) probability distribution X is the expectation EX(X)=pX(x)x with an integration analogue for continuous distributions.

Usage

Logistic$mean(...)

Arguments

...

Unused.

Method mode()

The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage

Logistic$mode(which = "all")

Arguments

which

(character(1) | numeric(1) Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance()

The variance of a distribution is defined by the formula varX=E[X2]E[X]2 where EX is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage

Logistic$variance(...)

Arguments

...

Unused.

Method skewness()

The skewness of a distribution is defined by the third standardised moment, skX=EX[xμσ3] where EX is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution.

Usage

Logistic$skewness(...)

Arguments

...

Unused.

Method kurtosis()

The kurtosis of a distribution is defined by the fourth standardised moment, kX=EX[xμσ4] where EX is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage

Logistic$kurtosis(excess = TRUE, ...)

Arguments

excess

(logical(1)) If TRUE (default) excess kurtosis returned.

...

Unused.

Method entropy()

The entropy of a (discrete) distribution is defined by (fX)log(fX) where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage

Logistic$entropy(base = 2, ...)

Arguments

base

(integer(1)) Base of the entropy logarithm, default = 2 (Shannon entropy)

...

Unused.

Method mgf()

The moment generating function is defined by mgfX(t)=EX[exp(xt)] where X is the distribution and EX is the expectation of the distribution X.

Usage

Logistic$mgf(t, ...)

Arguments

t

(integer(1)) t integer to evaluate function at.

...

Unused.

Method cf()

The characteristic function is defined by cfX(t)=EX[exp(xti)] where X is the distribution and EX is the expectation of the distribution X.

Usage

Logistic$cf(t, ...)

Arguments

t

(integer(1)) t integer to evaluate function at.

...

Unused.

Method pgf()

The probability generating function is defined by pgfX(z)=EX[exp(zx)] where X is the distribution and EX is the expectation of the distribution X.

Usage

Logistic$pgf(z, ...)

Arguments

z

(integer(1)) z integer to evaluate probability generating function at.

...

Unused.

Method clone()

The objects of this class are cloneable with this method.

Usage

Logistic$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Details

The Logistic distribution parameterised with mean, μ, and scale, s, is defined by the pdf, f(x)=exp((xμ)/s)/(s(1+exp((xμ)/s))2) for μϵR and s>0.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete