Computes the expected value of random variables involving Y. Users can use tsSmooth()
or print( MLEobj, what="Ey")
to access this output. See print.marssMLE
.
MARSShatyt(MLEobj, only.kem = TRUE)
A marssMLE
object with the par
element of estimated parameters, model
element with the model description and data.
If TRUE, return only ytT
, OtT
, yxtT
, and yxttpT
(values conditioned on the data from \(1:T\)) needed for the EM algorithm. If only.kem=FALSE
, then also return values conditioned on data from 1 to \(t-1\) (Ott1
and ytt1
) and 1 to \(t\) (Ott
and ytt
), yxtt1T
(\(var[\mathbf{Y}_t, \mathbf{X}_{t-1}|\mathbf{y}_{1:T}]\)), var.ytT (\(var[\mathbf{Y}_t|\mathbf{y}_{1:T}]\)), and var.EytT (\(var_X[E_{Y|x}[\mathbf{Y}_t|\mathbf{y}_{1:T},\mathbf{x}_t]]\)).
A list with the following components (n is the number of state processes). Following the notation in Holmes (2012), \(\mathbf{y}(1)\) is the observed data (for \(t=1:T\)) while \(\mathbf{y}(2)\) is the unobserved data. \(\mathbf{y}(1,1:t-1)\) is the observed data from time 1 to \(t-1\).
E[Y(t) | Y(1,1:T)=y(1,1:T)] (n x T matrix).
E[Y(t) | Y(1,1:t-1)=y(1,1:t-1)] (n x T matrix).
E[Y(t) | Y(1,1:t)=y(1,1:t)] (n x T matrix).
E[Y(t) t(Y(t)) | Y(1,1:T)=y(1,1:T)] (n x n x T array).
var[Y(t) | Y(1,1:T)=y(1,1:T)] (n x n x T array).
var_X[E_Y|x[Y(t) | Y(1,1:T)=y(1,1:T), X(t)=x(t)]] (n x n x T array).
E[Y(t) t(Y(t)) | Y(1,1:t-1)=y(1,1:t-1)] (n x n x T array).
E[Y(t) t(Y(t)) | Y(1,1:t)=y(1,1:t)] (n x n x T array).
E[Y(t) t(X(t)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).
E[Y(t) t(X(t-1)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).
E[Y(t) t(X(t+1)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).
Any error messages due to ill-conditioned matrices.
(TRUE/FALSE) Whether errors were generated.
For state space models, MARSShatyt()
computes the expectations involving \(\mathbf{Y}\). If \(\mathbf{Y}\) is completely observed, this entails simply replacing \(\mathbf{Y}\) with the observed \(\mathbf{y}\). When \(\mathbf{Y}\) is only partially observed, the expectation involves the conditional expectation of a multivariate normal.
Holmes, E. E. (2012) Derivation of the EM algorithm for constrained and unconstrained multivariate autoregressive state-space (MARSS) models. Technical report. arXiv:1302.3919 [stat.ME] Type RShowDoc("EMDerivation",package="MARSS")
to open a copy. See the section on 'Computing the expectations in the update equations' and the subsections on expectations involving Y.
# NOT RUN {
dat <- t(harborSeal)
dat <- dat[2:3, ]
fit <- MARSS(dat)
EyList <- MARSShatyt(fit)
# }
Run the code above in your browser using DataLab