Computes standard errors, confidence intervals and bias for the maximum-likelihood estimates of MARSS model parameters. If you what confidence intervals on the estimated hidden states, see print.marssMLE
and look for "states.cis".
MARSSparamCIs(MLEobj, method = "hessian", alpha = 0.05, nboot=1000)
An object of class marssMLE
. Must have a $par
element containing the MLE parameter estimates.
Method for calculating the standard errors: "hessian", "parametric", and "innovations" implemented currently.
alpha level for the 1-alpha confidence intervals.
Number of bootstraps to use for "parametric" and "innovations" methods.
MARSSparamCIs
returns the marssMLE
object passed in, with additional components par.se
, par.upCI
, par.lowCI
, par.CI.alpha
, par.CI.method
, par.CI.nboot
and par.bias
(if method is "parametric" or "innovations").
Approximate confidence intervals (CIs) on the model parameters may be calculated from the Hessian matrix (the matrix of partial 2nd derivatives of the parameter estimates) or parametric or non-parametric (innovations) bootstrapping using nboot
bootstraps. The Hessian CIs are based on the asymptotic normality of MLE parameters under a large-sample approximation. The Hessian computation for variance-covariance matrices is done on these matrices in their equivalent Cholesky decomposition form (see MARSShessian
. Bootstrap estimates of parameter bias are reported if method "parametric" or "innovations" is specified.
Note, these are added to the par (etc) elements of a marssMLE object but are in marss form not marxss form. Thus the MLEobj$par.upCI and related elements that are added to the marssMLE object may not look familiar to the user. Instead the user should extract these elements using print(MLEobj)
and passing in the argument what
set to "par.se","par.bias","par.lowCIs", or "par.upCIs". See print.marssMLE
.
Holmes, E. E., E. J. Ward, and M. D. Scheuerell (2012) Analysis of multivariate time-series using the MARSS package. NOAA Fisheries, Northwest Fisheries Science
Center, 2725 Montlake Blvd E., Seattle, WA 98112 Type RShowDoc("UserGuide",package="MARSS")
to open a copy.
# NOT RUN {
dat = t(harborSealWA)
dat = dat[2:4,]
kem = MARSS(dat, model=list(Z=matrix(1,3,1),
R="diagonal and unequal"))
kem.with.CIs.from.hessian = MARSSparamCIs(kem)
kem.with.CIs.from.hessian
# }
Run the code above in your browser using DataLab