Learn R Programming

pcIRT (version 0.1)

MPRM: Estimation of Multidimensional Polytomous Rasch model (Rasch, 1961)

Description

This function estimates the multidimensional polytomous Rasch model by Rasch (1961). The model estimates item category parameters $\beta$ for each item and each category and takes each category of data as another dimension.

$$P_{vih} = \frac{exp(\theta_{vh} + \beta_{ih})}{\sum_{j=0}^{m} exp(\theta_{vj} + \beta_{ij})}$$

Parameters are estimated by CML method.

Usage

MPRM(data, desmat, start)

## S3 method for class 'MPRM': summary(object, \dots) ## S3 method for class 'MPRM': print(x, \dots)

Arguments

data
Data matrix or data frame; rows represent observations (persons), columns represent the items
desmat
Design matrix; if missing, the design matrix will be created automatically.
start
Starting values for parameter estimation. If missing, a vector of 0 is used as starting values.
object
object of class MPRM
x
{object of class MPRM}
...
...

Value

  • datadata matrix according to the input
  • designdesign matrix either according to the input or according to the automatically generated matrix
  • logLikelihoodconditional log-likelihood
  • estparestimated basic item category parameters
  • estpar_seestimated standard errors for basic item category parameters
  • itemparestimated item category parameters
  • itempar_seestimated standard errors for item category parameters
  • hessianHessian matrix
  • convergenceconvergence of solution (see help files in optim)
  • fun_callsnumber of function calls (see help files in optim)

Details

The parameters of the multidimensional polytomous Rasch model (Rasch, 1961) are estimated by CML estimation. For the CML estimation no assumption on the person parameter distribution is necessary.

References

Andersen, E. B. (1995). Polytomous Rasch models and their estimation. In G. H. Fischer and I. Molenaar (Eds.). Rasch Models - Foundations, Recent Developements, and Applications. Springer.

Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

Rasch, G. (1961). On general laws and the meaning of measurement in psychology, Proceedings Fourth Berekely Symposium on Mathematical Statistiscs and Probability 5, 321-333.

Examples

Run this code
#simulate data set
simdat <- simMPRM(rbind(matrix(c(-1.5,0.5,0.5,1,0.8,-0.3, 0.2,-1.2), ncol=4),0), 500)

#estimate MPRM item parameters
res_mprm <- MPRM(simdat$datmat)

summary(res_mprm)

Run the code above in your browser using DataLab