powered by
The function calculates the MSE error between actual and predicted values.
MSE(actual, prediction)NMSE_eval(eval_par = list(train.actual = NULL))RMSE_eval()MAPE_eval()sMAPE_eval()MAXError_eval()AIC_eval()BIC_eval()AICc_eval()LogLik_eval()
NMSE_eval(eval_par = list(train.actual = NULL))
RMSE_eval()
MAPE_eval()
sMAPE_eval()
MAXError_eval()
AIC_eval()
BIC_eval()
AICc_eval()
LogLik_eval()
A vector or univariate time series containing actual values for a time series that are to be compared against its respective predictions.
A vector or univariate time series containing time series predictions that are to be compared against the values in actual.
actual
List of named parameters required by NMSE such as train.actual.
NMSE
train.actual
A numeric value of the MSE error of prediction.
Normalised Mean Squared Error.
Root Mean Squared Error.
Mean Absolute Percentage Error.
Symmetric Mean Absolute Percentage Error.
Maximal Error.
Akaike's Information Criterion.
Schwarz's Bayesian Information Criterion.
Second-order Akaike's Information Criterion.
Log-Likelihood.
Z. Chen and Y. Yang, 2004, Assessing forecast accuracy measures, Preprint Series, n. 2004-2010, p. 2004-10.
NMSE,MAPE,sMAPE, MAXError
MAPE
sMAPE
MAXError
# NOT RUN { data(SantaFe.A,SantaFe.A.cont) pred <- marimapred(SantaFe.A,n.ahead=100) MSE(SantaFe.A.cont[,1], pred) # }
Run the code above in your browser using DataLab