Learn R Programming

MSnID (version 1.6.0)

MSnIDFilter-class: The "MSnIDFilter" Class for Handling MS/MS Criteria, Relationships and Thresholds for Data Filtration.

Description

The MSnIDFilter is a convenience class for manipulating the MS/MS filter for MS/MS results.

Arguments

Objects from the Class

The way to create objects is to call MSnIDFilter constructor function that takes as input the MSnID class instance and (optionally) filterList.

Slots

MSnIDObj:
An instance of class "MSnID".
filterList:
An optional argument. A list with element names corresponding to column names avalable in MSnID instance. Each element contains sub-elements "comparison" and "threshold". "Comparison" is one of the relationship operators (e.g. ">") see Comparison for details. "Threshold" is the corresponding parameter value the identification has to be more or less (depending on comparison) to pass the filter.

Methods

show
signature(object="MSnIDFilter"): Prints MSnIDFilter object.
object$name, object$name<-value
Access and set filterList elements.
names
signature(x="MSnIDFilter") Returns the names of the criteria.
as.numeric
signature(x="MSnIDFilter") Converts filterList into "numeric" vector. Vector names are the list element names. Vector values are threshold values. Comparison operators are lost.
length
signature(x="MSnIDFilter") Returns the number of criteria set in the "MSnIDFilter" object.
update
signature(object="MSnIDFilter", ...) The additional ... argument is numeric vector of the same length as the number of criteria in MSnIDFilter object. The method update the corresponding thresholds to new provided values.

See Also

MSnSet evaluate_filter apply_filter optimize_filter

Examples

Run this code
data(c_elegans)

## Filtering using filter object:
# first adding columns that will be used as filters
msnidObj$msmsScore <- -log10(msnidObj$`MS-GF:SpecEValue`)
msnidObj$mzError <- abs(msnidObj$experimentalMassToCharge - 
                        msnidObj$calculatedMassToCharge)
# setting up filter object
filtObj <- MSnIDFilter(msnidObj)
filtObj$msmsScore <- list(comparison=">", threshold=10.0)
filtObj$mzError <- list(comparison="<", threshold=0.1) # 0.1 Thomson
show(filtObj)
# applying filter and comparing MSnID object before and after
show(msnidObj)
msnidObj <- apply_filter(msnidObj, filtObj)
show(msnidObj)

Run the code above in your browser using DataLab