Mclust(data, G=NULL, modelNames=NULL, prior=NULL, control=emControl(),
initialization=NULL, warn=FALSE, ...)G=1:9.mclustModelNames describes the available models.
The default is:
[object Object],[object Object],[object ObjectpriorControl.emControl().do.call."Mclust" providing the optimal (according to BIC)
mixture model estimation.
The details of the output components are as follows:map(z): The classification corresponding to z.C. Fraley and A. E. Raftery (2005, revised 2009). Bayesian regularization for normal mixture estimation and model-based clustering. Technical Report, Department of Statistics, University of Washington.
C. Fraley and A. E. Raftery (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155-181.
summary.Mclust,
plot.Mclust,
priorControl,
emControl,
hc,
mclustBIC,
mclustModelNames,
mclust.optionsmod1 = Mclust(iris[,1:4])
summary(mod1)
mod2 = Mclust(iris[,1:4], G = 1)
summary(mod2)
mod3 = Mclust(iris[,1:4], prior = priorControl())
summary(mod3)
mod4 = Mclust(iris[,1:4], prior = priorControl(functionName="defaultPrior", shrinkage=0.1))
summary(mod4)Run the code above in your browser using DataLab