# NOT RUN {
# D-efficient design
# 3 Attributes, 2 are dummy coded and 1 continuous (= 3 parameters).
cs <- Profiles(lvls = c(2, 3, 2), coding = c("D", "C", "D"), c.lvls = list(c(2, 4, 6)))
ps <- c(0.8, 0.2, -0.3) # Prior parameter vector
Modfed(cand.set = cs, n.sets = 8, n.alts = 2, alt.cte = c(0, 0), par.draws = ps)
# DB-efficient design.
# 3 Attributes with 2, 3 and 2 levels, all effect coded (= 4 parameters).
cs <- Profiles(lvls = c(2, 3, 2), coding = c("E", "E", "E"))
m <- c(0.8, 0.2, -0.3, -0.2, 0.7) # Prior mean (total = 5 parameters).
v <- diag(length(m)) # Prior variance.
set.seed(123)
ps <- MASS::mvrnorm(n = 10, mu = m, Sigma = v) # 10 draws.
Modfed(cand.set = cs, n.sets = 8, n.alts = 2, alt.cte = c(1, 0), par.draws = ps)
# }
Run the code above in your browser using DataLab