r <- matrix(c(1,2,2,1), nrow=2,ncol=2)
   MultiStrauss(1:2, r)
   # prints a sensible description of itself
   data(betacells)
   r <- 30.0 * matrix(c(1,2,2,1), nrow=2,ncol=2)
   ppm(betacells, ~1, MultiStrauss(c("off","on"), r))
   # fit the stationary multitype Strauss process to `betacells'
   ppm(betacells, ~polynom(x,y,3), MultiStrauss(c("off","on"), r))
   # fit a nonstationary Strauss process with log-cubic polynomial trendRun the code above in your browser using DataLab