Last chance! 50% off unlimited learning
Sale ends in
MultiStraussHard(types, iradii, hradii)
marks
variable in the data)"interact"
describing the interpoint interaction
structure of the multitype/hard core Strauss process with
interaction radii $iradii[i,j]$
and hard core radii $hradii[i,j]$.types
is interpreted as a
set of factor levels. That is,
in order that ppm
can fit the multitype Strauss model
correctly to a point pattern X
,
this must be a marked point pattern; the mark vector
X$marks
must be a factor; and
the argument types
must
equal levels(X$marks)
.MultiStrauss
) and the hard core process
(case $\gamma=0$ of the Strauss process).
A pair of points
of types $i$ and $j$
must not lie closer than $h_{ij}$ units apart;
if the pair lies more than $h_{ij}$ and less than
$r_{ij}$ units apart, it
contributes a factor
$\gamma_{ij}$ to the probability density. The matrices iradii
and hradii
must be symmetric, with entries
which are either positive numbers or NA
.
A value of NA
indicates that no interaction term should be included
for this combination of types.
Note that only the interaction radii and hardcore radii
are specified in MultiStraussHard
.
The canonical parameters $\log(\beta_j)$
and $\log(\gamma_{ij})$
are estimated by ppm()
, not fixed in
MultiStraussHard()
.
ppm
,
pairwise.family
,
ppm.object
,
MultiStrauss
,
Strauss
r <- matrix(3, nrow=2,ncol=2)
h <- matrix(c(1,2,2,1), nrow=2,ncol=2)
MultiStraussHard(1:2, r, h)
# prints a sensible description of itself
data(betacells)
r <- 30.0 * matrix(c(1,2,2,1), nrow=2,ncol=2)
h <- 30.0 * matrix(c(NA,1,1,NA), nrow=2,ncol=2)
ppm(betacells, ~1, MultiStraussHard(c("off","on"), r, h), rbord=60.0)
# fit the stationary multitype hardcore Strauss process to `betacells'
Run the code above in your browser using DataLab