
The $\mathbf{N4212}(u,v)$ copula is not comprehensive because for $\Theta = 1$ the copula becomes the so-called $\mathbf{PSP}(u,v)$ copula (see PSP
) and as $\Theta \rightarrow \infty$ the copula becomes $\mathbf{M}(u,v)$ (see M
). The copula is undefined for $\Theta < 1$. The N4212 copula has respective lower- and upper-tail dependency (see taildepCOP
).
Although GHcop
), Plackett (PLACKETTcop
), and a few other copulas. This is done largely for pedagogic purposes. But the Plackett is comprehensive and N4212 is not comprehensive so both those concepts are available for instructional purposes.
N4212cop(u, v, para=NULL, infis=100, ...)
M
); andN4212cop(0.4,0.6, para=1) == PSP(0.4,0.6) # TRUE
N4212cop(0.4,0.6, para=10) # 0.3999928
taildepCOP(cop=N4212cop, para=10) # LamL = 0.93303; LamU = 0.92823
D <- simCOP(n=400, cop=N4212cop, para=2)
D <- simCOP(n=400, cop=N4212cop, para=10)
D <- simCOP(n=400, cop=N4212cop, para=100)
Run the code above in your browser using DataLab