NMixMCMC. It computes
estimated posterior predictive densities for each margin.NMixPredDensMarg(x, ...)## S3 method for class 'default':
NMixPredDensMarg(x, scale, K, w, mu, Li, Krandom=TRUE, \dots)
## S3 method for class 'NMixMCMC':
NMixPredDensMarg(x, grid, lgrid=50, scaled=FALSE, \dots)
## S3 method for class 'GLMM_MCMC':
NMixPredDensMarg(x, grid, lgrid=50, scaled=FALSE, \dots)
NMixMCMC for
NMixPredDensMarg.NMixMCMC function. An object of class GLMM_MCMC for
NMixPredDensMarg.GLMM_MCMC function.
A list with the grid values (see below) for
shift and the scale.Krandom$=$FALSE) or a
numeric vector with the chain for the number of mixture components. If x$dim is 1 then grid may be a numeric vector. If
x$dim is higher than then grid must b
grid if
that is not specified.TRUE, the density of shifted and scaled data is
summarized. The shift and scale vector are taken from the
scale component of the object x.NMixPredDensMarg which has the following components:x1, ...or take names from
grid argument.freqK.1, ..., i.e.,
dens[[1]]$=$dens[["1"]] is the predictive
density for margin 1 etc.1, .... That is,
dens[[1]][[1]] $=$ dens[["1"]][[1]] is the predictive
density for margin 1 conditioned by $K=1$,
dens[[1]][[2]] $=$ dens[["1"]][[2]] is the predictive
density for margin 1 conditioned by $K=2$ etc. Note that densK provides some additional information only
when Krandom $=$ TRUE or when x results from
the NMixMCMC call to the reversible jump MCMC.
plot method implemented for the resulting object.plot.NMixPredDensMarg, NMixMCMC, GLMM_MCMC, NMixPredDensJoint2.## See additional material available in
## YOUR_R_DIR/library/mixAK/doc/
## or YOUR_R_DIR/site-library/mixAK/doc/
## - files Galaxy.pdf, Faithful.pdf, Tandmob.pdfRun the code above in your browser using DataLab