# NOT RUN {
set.seed(123)
x <- rnorm(100) ; y <- rnorm(100)
NNS.dep(x, y)
## Correlation / Dependence Matrix
x <- rnorm(100) ; y <- rnorm(100) ; z <- rnorm(100)
B <- cbind(x, y, z)
NNS.dep(B)
## p-values for [NNS.dep]
x <- seq(-5, 5, .1); y <- x^2 + rnorm(length(x))
nns_cor_dep <- NNS.dep(x, y, print.map = TRUE)
nns_cor_dep
## Create permutations of y
y_p <- replicate(1000, sample.int(length(y)))
## Generate new correlation and dependence measures on each new permutation of y
nns.mc <- apply(y_p, 2, function(g) NNS.dep(x, y[g]))
## Store results
cors <- unlist(lapply(nns.mc, "[[", 1))
deps <- unlist(lapply(nns.mc, "[[", 2))
## View results
hist(cors)
hist(deps)
## Left tailed correlation p-value
cor_p_value <- LPM(0, nns_cor_dep$Correlation, cors)
cor_p_value
## Right tailed correlation p-value
cor_p_value <- UPM(0, nns_cor_dep$Correlation, cors)
cor_p_value
## Confidence Intervals
## For 95th percentile VaR (both-tails) see [LPM.VaR] and [UPM.VaR]
## Lower CI
LPM.VaR(.025, 0, cors)
## Upper CI
UPM.VaR(.025, 0, cors)
## Left tailed dependence p-value
dep_p_value <- LPM(0, nns_cor_dep$Dependence, deps)
dep_p_value
## Right tailed dependence p-value
dep_p_value <- UPM(0, nns_cor_dep$Dependence, deps)
dep_p_value
# }
Run the code above in your browser using DataLab