Returns the bi-variate "Correlation" and "Dependence" or correlation / dependence matrix for matrix input.
Arguments
x
a numeric vector, matrix or data frame.
y
NULL (default) or a numeric vector with compatible dimensions to x.
asym
logical; FALSE (default) Allows for asymmetrical dependencies.
p.value
logical; FALSE (default) Generates 100 independent random permutations to test results against and plots 95 percent confidence intervals along with all results.
print.map
logical; FALSE (default) Plots quadrant means, or p-value replicates.
Author
Fred Viole, OVVO Financial Systems
References
Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)
if (FALSE) {
set.seed(123)
x <- rnorm(100) ; y <- rnorm(100)
NNS.dep(x, y)
## Correlation / Dependence Matrixx <- rnorm(100) ; y <- rnorm(100) ; z <- rnorm(100)
B <- cbind(x, y, z)
NNS.dep(B)
}