Last chance! 50% off unlimited learning
Sale ends in
These functions return the number of rooted or unrooted binary trees consistent with a given pattern of splits.
NRooted(tips)NUnrooted(tips)
NRooted64(tips)
NUnrooted64(tips)
LnUnrooted(tips)
LnUnrooted.int(tips)
Log2Unrooted(tips)
Log2Unrooted.int(tips)
LnRooted(tips)
LnRooted.int(tips)
Log2Rooted(tips)
Log2Rooted.int(tips)
LnUnrootedSplits(...)
Log2UnrootedSplits(...)
NUnrootedSplits(...)
LnUnrootedMult(...)
Log2UnrootedMult(...)
NUnrootedMult(...)
Integer specifying the number of leaves.
Integer vector, or series of integers, listing the number of leaves in each split.
NUnrooted
: Number of unrooted trees
NRooted64
: Exact number of rooted trees as 64-bit integer
(13 < nTip
< 19)
NUnrooted64
: Exact number of unrooted trees as 64-bit integer
(14 < nTip
< 20)
LnUnrooted
: Log Number of unrooted trees
LnUnrooted.int
: Log Number of unrooted trees (as integer)
LnRooted
: Log Number of rooted trees
LnRooted.int
: Log Number of rooted trees (as integer)
NUnrootedSplits
: Number of unrooted trees consistent with a bipartition
split.
NUnrootedMult
: Number of unrooted trees consistent with a multi-partition
split.
Functions starting N
return the number of rooted or unrooted trees.
Replace this initial N
with Ln
for the natural logarithm of this number;
or Log2
for its base 2 logarithm.
Calculations follow Cavalli-Sforza & Edwards (1967) and Carter et al. 1990, Theorem 2.
Carter1990TreeTools
CavalliSforza1967TreeTools
Other tree information functions:
CladisticInfo()
,
TreesMatchingTree()
# NOT RUN {
NRooted(10)
NUnrooted(10)
LnRooted(10)
LnUnrooted(10)
Log2Unrooted(10)
# Number of trees consistent with a character whose states are
# 00000 11111 222
NUnrootedMult(c(5,5,3))
NUnrooted64(18)
LnUnrootedSplits(c(2,4))
LnUnrootedSplits(3, 3)
Log2UnrootedSplits(c(2,4))
Log2UnrootedSplits(3, 3)
NUnrootedSplits(c(2,4))
NUnrootedSplits(3, 3)
# }
Run the code above in your browser using DataLab