OutlierMahdist(x, ...) "OutlierMahdist"(x, grouping, control, trace=FALSE, ...) "OutlierMahdist"(formula, data, ..., subset, na.action)
model.frame
) containing the variables in the
formula formula
.x
.CovControlMcd-class
, CovControlOgk-class
,
CovControlSest-class
, etc.,
containing estimation options. The class of this object defines
which estimator will be used. Alternatively a character string can be specified
which names the estimator - one of auto, sde, mcd, ogk, m, mve, sfast, surreal,
bisquare, rocke. If 'auto' is specified or the argument is missing, the
function will select the estimator (see below for details)trace = FALSE
OutlierMahdist
which
is a subclass of the virtual class Outlier
.
grouping
) the proposed method iterates
through the classes present in the data, separates each class from the rest and
identifies the outliers relative to this class, thus treating both types of outliers,
the mislabeled and the abnormal samples in a homogenous way.
The estimation method is selected by the control object control
.
If a character string naming an estimator is specified, a
new control object will be created and used (with default estimation options).
If this argument is missing or a character string
'auto' is specified, the function will select the robust estimator
according to the size of the dataset - for details see CovRobust
.
P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley.
P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212--223.
Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1--47. URL http://www.jstatsoft.org/v32/i03/. Filzmoser P & Todorov V (2012), Robust tools for the imperfect world, To appear.
data(hemophilia)
obj <- OutlierMahdist(gr~.,data=hemophilia)
obj
getDistance(obj) # returns an array of distances
getClassLabels(obj, 1) # returns an array of indices for a given class
getCutoff(obj) # returns an array of cutoff values (for each class, usually equal)
getFlag(obj) # returns an 0/1 array of flags
plot(obj, class=2) # standard plot function
Run the code above in your browser using DataLab