
Describe and understand your model’s parameters!
parameters
’ primary goal is to provide utilities for processing the
parameters of various statistical models (see
here for a list of supported
models). Beyond computing p-values, CIs, Bayesian indices
and other measures for a wide variety of models, this package implements
features like bootstrapping of parameters and models, feature
reduction (feature extraction and variable selection).
Run the following:
install.packages("parameters")
library("parameters")
Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:
The
model_parameters()
function (that can be accessed via the parameters()
shortcut) allows
you to extract the parameters and their characteristics from various
models in a consistent way. It can be considered as a lightweight
alternative to broom::tidy()
,
with some notable differences:
standardize_names()
).model <- lm(Sepal.Width ~ Petal.Length * Species + Petal.Width, data = iris)
# regular model parameters
model_parameters(model)
#> Parameter | Coefficient | SE | 95% CI | t | df | p
#> ------------------------------------------------------------------------------------------------
#> (Intercept) | 2.89 | 0.36 | [ 2.18, 3.60] | 8.01 | 143 | < .001
#> Petal.Length | 0.26 | 0.25 | [-0.22, 0.75] | 1.07 | 143 | 0.287
#> Species [versicolor] | -1.66 | 0.53 | [-2.71, -0.62] | -3.14 | 143 | 0.002
#> Species [virginica] | -1.92 | 0.59 | [-3.08, -0.76] | -3.28 | 143 | 0.001
#> Petal.Width | 0.62 | 0.14 | [ 0.34, 0.89] | 4.41 | 143 | < .001
#> Petal.Length * Species [versicolor] | -0.09 | 0.26 | [-0.61, 0.42] | -0.36 | 143 | 0.721
#> Petal.Length * Species [virginica] | -0.13 | 0.26 | [-0.64, 0.38] | -0.50 | 143 | 0.618
# standardized parameters
model_parameters(model, standardize = "refit")
#> Parameter | Coefficient | SE | 95% CI | t | df | p
#> ------------------------------------------------------------------------------------------------
#> (Intercept) | 3.59 | 1.30 | [ 1.01, 6.17] | 2.75 | 143 | 0.007
#> Petal.Length | 1.07 | 1.00 | [-0.91, 3.04] | 1.07 | 143 | 0.287
#> Species [versicolor] | -4.62 | 1.31 | [-7.21, -2.03] | -3.53 | 143 | < .001
#> Species [virginica] | -5.51 | 1.38 | [-8.23, -2.79] | -4.00 | 143 | < .001
#> Petal.Width | 1.08 | 0.24 | [ 0.59, 1.56] | 4.41 | 143 | < .001
#> Petal.Length * Species [versicolor] | -0.38 | 1.06 | [-2.48, 1.72] | -0.36 | 143 | 0.721
#> Petal.Length * Species [virginica] | -0.52 | 1.04 | [-2.58, 1.54] | -0.50 | 143 | 0.618
library(lme4)
model <- lmer(Sepal.Width ~ Petal.Length + (1|Species), data = iris)
# model parameters with CI, df and p-values based on Wald approximation
model_parameters(model)
#> Parameter | Coefficient | SE | 95% CI | t | df | p
#> ----------------------------------------------------------------------
#> (Intercept) | 2.00 | 0.56 | [0.90, 3.10] | 3.56 | 146 | < .001
#> Petal.Length | 0.28 | 0.06 | [0.17, 0.40] | 4.75 | 146 | < .001
# model parameters with CI, df and p-values based on Kenward-Roger approximation
model_parameters(model, df_method = "kenward")
#> Parameter | Coefficient | SE | 95% CI | t | df | p
#> -------------------------------------------------------------------------
#> (Intercept) | 2.00 | 0.57 | [0.07, 3.93] | 3.53 | 2.67 | 0.046
#> Petal.Length | 0.28 | 0.06 | [0.16, 0.40] | 4.58 | 140.99 | < .001
Besides many types of regression models and packages, it also works for other types of models, such as structural models (EFA, CFA, SEM…).
library(psych)
model <- psych::fa(attitude, nfactors = 3)
model_parameters(model)
#> # Rotated loadings from Factor Analysis (oblimin-rotation)
#>
#> Variable | MR1 | MR2 | MR3 | Complexity | Uniqueness
#> ------------------------------------------------------------
#> rating | 0.90 | -0.07 | -0.05 | 1.02 | 0.23
#> complaints | 0.97 | -0.06 | 0.04 | 1.01 | 0.10
#> privileges | 0.44 | 0.25 | -0.05 | 1.64 | 0.65
#> learning | 0.47 | 0.54 | -0.28 | 2.51 | 0.24
#> raises | 0.55 | 0.43 | 0.25 | 2.35 | 0.23
#> critical | 0.16 | 0.17 | 0.48 | 1.46 | 0.67
#> advance | -0.11 | 0.91 | 0.07 | 1.04 | 0.22
#>
#> The 3 latent factors (oblimin rotation) accounted for 66.60% of the total variance of the original data (MR1 = 38.19%, MR2 = 22.69%, MR3 = 5.72%).
parameters_selection()
can help you quickly select and retain the most relevant predictors
using methods tailored for the model type.
library(dplyr)
lm(disp ~ ., data = mtcars) %>%
select_parameters() %>%
model_parameters()
#> Parameter | Coefficient | SE | 95% CI | t | df | p
#> ----------------------------------------------------------------------------
#> (Intercept) | 141.70 | 125.67 | [-116.62, 400.02] | 1.13 | 26 | 0.270
#> cyl | 13.14 | 7.90 | [ -3.10, 29.38] | 1.66 | 26 | 0.108
#> hp | 0.63 | 0.20 | [ 0.22, 1.03] | 3.18 | 26 | 0.004
#> wt | 80.45 | 12.22 | [ 55.33, 105.57] | 6.58 | 26 | < .001
#> qsec | -14.68 | 6.14 | [ -27.31, -2.05] | -2.39 | 26 | 0.024
#> carb | -28.75 | 5.60 | [ -40.28, -17.23] | -5.13 | 26 | < .001
This packages also contains a lot of other useful functions:
data(iris)
describe_distribution(iris)
#> Variable | Mean | SD | Min | Max | Skewness | Kurtosis | n | n_Missing
#> --------------------------------------------------------------------------------
#> Sepal.Length | 5.84 | 0.83 | 4.30 | 7.90 | 0.31 | -0.55 | 150 | 0
#> Sepal.Width | 3.06 | 0.44 | 2.00 | 4.40 | 0.32 | 0.23 | 150 | 0
#> Petal.Length | 3.76 | 1.77 | 1.00 | 6.90 | -0.27 | -1.40 | 150 | 0
#> Petal.Width | 1.20 | 0.76 | 0.10 | 2.50 | -0.10 | -1.34 | 150 | 0
In order to cite this package, please use the following citation:
Corresponding BibTeX entry:
@Article{,
title = {Describe and understand your model's parameters},
author = {Dominique Makowski and Mattan S. Ben-Shachar and Daniel
Lüdecke},
journal = {CRAN},
year = {2019},
note = {R package},
url = {https://github.com/easystats/parameters},
}
install.packages('parameters')