PEABM(X, delta, starts = list(theta= 1, sigma= 1), leve = 0.95)
p(t,.|x)
is the density of a Gaussian law
with mean = x0 + theta * t
and variance = sigma^2 * t
.
R
has the [dqpr]norm
functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the normal distribution.PEOU
Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUexp
Explicit Estimators of Ornstein-Uhlenbeck Model, PEOUG
Parametric Estimation of Hull-White/Vasicek Models, PEBS
Parametric Estimation of model Black-Scholes.## Parametric estimation of Arithmetic Brownian Motion.
## t0 = 0 ,T = 100
data(DATA3)
res <- PEABM(DATA3,delta=0.1,starts=list(theta=1,sigma=1),leve = 0.95)
res
ABMF(N=1000,M=10,t0=0,T=100,x0=DATA3[1],theta=res$coef[1],sigma=res$coef[2])
points(seq(0,100,length=length(DATA3)),DATA3,type="l",lwd=3,col="red")
Run the code above in your browser using DataLab